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Abstract—Content-centric networking has been proposed as
a new networking paradigm that is centered around the distri-
bution of content. A key idea of content-centric networks is to
address content by name and to enable nodes in the network to
respond to content requests. Most proposals for content-centric
networks require a ”clean slate” approach and a replacement of
today’s TCP/IP protocol stack, which raises questions about a
feasible deployment path.

In this paper, we ask the question to which extent the ideas
of content-centric networks can be realized on top of today’s
IP protocol suite. We explore an approach for name-based
addressing that extends today’s TCP/IP protocols in a fully
standard compliant way. We implement our new method in order
to demonstrate its feasibility and evaluate the performance of the
system using both latency and processing overhead as measures.
The obtained results demonstrate that name-based addressing
on TCP/IP is feasible. We also acknowledge that content-centric
networks designed from the ground up go beyond what can be
achieved on top of IP.

I. INTRODUCTION

Content-centric networking has been proposed as a new
networking paradigm centered around the distribution of con-
tent [11][14][13]. A key idea of content-centric networks is to
address content by its name and not adsress the host serving
the content. Any network node is enabled to cache and respond
to a request if the node holds the requested content item. Cur-
rent proposals for content-centric networks require a departure
from today’s IP protocol stack. However, replacing today’s
IP protocol stack with something new requires substantial
investment in network infrastructure and end systems. Given
the very slow uptake of the next version of the IP protocol,
IPv6, it is questionable when and if at all a radically new
protocol stack can see widespread deployment.

In this paper, we are questioning the common belief that
content-centric networks requires a departure from the IP
protocol suite. We explore to which extent content-centric
networks can be realized on top of IP. The core element
of content-centric networks is the ability to address content
by name. We propose an appraoch for a name-based content
nework, On-Path CDN, that extends TCP/IP in a fully standard
compliant way. Our approach enables any node on-route be-
tween the end user and the content provider to serve requested
content.

We have implemented our new method in order to demon-
strate its feasibility and evaluate the performance of the system

using both latency and processing overhead as measures. The
obtained results demonstrate that it is possible to realize
a name-based addressing mechanism on TCP/IP. We also
show that On-Path CDN can enhance end-user experience
when consuming data over the Internet. We acknowledge that
content-centric networks designed from the ground up go
beyond what can be achieved with an IP compliant approach.

We detail the operations of traditional and on-path CDNs in
Section 2. We explain our mechanism and the implementation
of a prototype system in Section 3 and Section 4, respectively.
In Section 5, we evaluate the performance of our system
using network latency and processing overhead as metrics. We
discuss related work in Section 6.

II. CDNS FOR CONTENT-CENTRIC NETWORKING

A. Traditional approach

We first contrast our work on On-Path CDNs to existing
methods of content delivery by highlighting two issues.

The first issue is in regards to the method of content
delivery itself. Today, content providers either host their high-
bandwidth content themselves, or more commonly pay con-
tent delivery network (CDN) providers such as Akamai and
Limelight Networks for the delivery of their content. When
content is hosted on a CDN, a user request for it is usually
redirected to a server closer to the user that is operated by
the CDN vendor. Though this fundamental task appears to
naturally fall into the realm of the network, the host-centric
Internet architecture was not designed with such a service.
This has led to the development of application-specific and
non-interoperable mechanisms, the most common of which
are: redirection through domain name resolution using DNS
[17][18]; request redirection using HTTP [10]; and other
application-level mechanism, e.g., based on HTML rewriting
or distributed hash tables (DHTs).

The above redirection work-arounds require central control
and impede cooperation of CDNs operated by different parties;
e.g., to allow a ”long-range” backbone CDN to reach into a
metro network and make use of the CDN resources of the local
operator. Once the redirection is set up, a local CDN will be
unable to serve the content from another node even if it is
closer to the end user than the node that the user has been
redirected to. As a consequence, CDNs are rather statically



deployed and scaling them to adapt to sudden changes, such
as unexpected flash crowds, is hardly possible.

The second issue is in regards to the networking architecture
and naming perspective. Currently, requests for content are
usually routed based on the Internet address (IP address) of
the node that has the content. While this is in keeping with the
current Internet architecture, it does not offer a correct way
of addressing content, which is independent of the location of
the content itself. Methods of addressing naming issues, such
as Content-Centric Networking [11] as well as systems like
DONA [14] and i3 [13] require a clean-slate implementation
of the Internet in order to be useful.

Our work presents an implementation of content-centric
networking that runs on today’s Internet technologies and
protocols. In this paper, we raise and answer the question of
how far we can go in the direction of CCN based on today’s IP
protocol suite, with our additions being standards compliant.
We propose a design for an IP compliant CCN architecture,
present a prototype implementation, discuss limitations and
performance as well as unexpected road-blocks in the imple-
mentation.

B. On-path content delivery

Fig. 1. The handshakes and networking messages used in the TCP-
interception method of on-path CDNs.

We propose an alternative method for the delivery of
multimedia content that enables delivering multimedia content
from any node that is on the route from the end user to the
content provider. In our approach, any intermediate node can
respond to content requests and serve content if it has a copy of
the content cached. This avoids explicit redirection to another
server and reduces latency, thereby improving the end user’s
multimedia experience.

In addition, our implementation and solution also provides
a method of serving content to the users without redirect-
ing them to a particular node. Our on-path content delivery
mechanism enables true content-based delivery without the
network having to worry about which nodes the content re-
sides on, etc. Our implemenetation also enables content-based
networking on today’s Internet, without any modifications to
the underlying TCP/UDP/IP protocols, which we believe to be
an extremely important contribution of our project.

Even though on-path content delivery is a simple concept,
in its true form it departs from the current Internet design.
Since true on-path content delivery would require changes
to the existing networking protocol suite, it is not surprising
that redirection is the preferred method of CDNs for serving
multimedia content in a reliable and fast manner.

However, our approach to on-path content delivery is de-
ployable on today’s Internet infrastructure and uses existing
networking protocols. Our on-path content delivery method
makes use of signaling messages that piggyback on existing
TCP handshake mechanisms (which are used to set up Internet
sessions), as described in the next section.

C. Advantages of on-path content delivery

There are many advantages in allowing multimedia content
to be served using intermediate nodes on the path from an
end user to a content provider, in contrast to using a statically
deployed CDN network, or worse yet, serving content from
just one central location. Some of the advantages are:

• Network latency is reduced and there is less congestion
on the Internet. Especially as video traffic is predicted to
grow and account for 90% of the Internet traffic in 2013
[16], having video served from nodes that are closer to
the end user will dramatically reduce congestion in the
network.

• Regional networks and the Internet dynamically adjust to
high loads of unanticipated traffic, e.g., such as in the
case of ”flash crowds” or highly viral content.

• Service providers can reduce redundant traffic on expen-
sive transit links.

• CDN service providers can establish business relations
with each other to provide better end-to-end multimedia
experience to a larger user population.

We describe the design decision and details of the core
mechanism of our solution, which eventually enables these
advantages, in the following section.

III. MECHANISM DETAILS

Non-realtime video on the Internet today is delivered almost
exclusively using HTTP, with TCP as its underlying transport
protocol. Since the goal of our work is to enable a solution
over today’s Internet without any modifications to the end user
and networking stack, we focus on a solution that is compliant
with and requires no changes to the TCP specification [6].

At the beginning of a HTTP session the user application
establishes a TCP connection to either the host indicated in
the URL [8] that identifies the requested content or to a proxy
if configured. Once the TCP session has been established, the
user application then uses the URL to issue a HTTP request
identifying the content. Thus, intercepting a content request
on path for inspection and content routing decision requires
terminating the TCP session first. Since an established TCP
connection cannot be renegotiated and transferred, however,
on-path routing without additional mechanisms could easily
result in a daisy chain of TCP connections for a single user
session.



Fig. 2. The details of implementing the handshakes and networking messages
in the TCP-interception method.

Session establishment in TCP is signaled using the same
packet format as for the actual transfer of the application data;
i.e., a TCP packet consists of a header and a payload data.
Our method of on-path content delivery exploits the fact that
the TCP packets for the initial handshake of a session don’t
include any payload. We piggyback some key information in
two of three TCP handshake messages, particularly the TCP
SYN and the TCP SYN-ACK packets. Though this would be
possible by modifying the protocol stack at the user end, we
enable this through use of a modified HTTP proxy that rewrites
the TCP handshake messages as outlined in Figure 1 and
depicted with greater detail in Figure 2. In the proxy scenario,
the application (e.g., the browser) establishes a session with
the proxy server, which rewrites the TCP handshake messages
to enable the on-path delivery mechanism. Thus, there is no
need to rewrite the networking stack at the end user’s node,
and at the same time, the user is able to benefit from an ”opt-
in” option to make use of this feature.

Our method uses the first TCP SYN message from the client
to the content provider for carrying the pointer to the requested
content (such as the URL) in its payload. This message moves
through the network in the direction of the content provider. It
passes through all intermediate nodes that are not able to serve
the content (or are ignoring TCP SYN payloads). However,
once an intermediate node detects it has the content referenced
in this packet, it terminates the request forwarding process and
replies to the TCP SYN packet with a TCP SYN-ACK packet.

The TCP SYN-ACK packet sent by the intermediate node
contains a payload consisting of the initial content pointer (the
URL), along with a delimiter and a an identifier of the node
that has intercepted the request. This allows the networking
stack in the proxy server that is serving the end user to realize
that an intermediate node is responding to the initial content
request.

When the client proxy receives the TCP SYN-ACK mes-
sage, it replies with an ACK to the intermediate node, thus
completing the TCP handshake. At this point, a TCP session
is set up between the proxy and the intermediate node that
can serve the content directly, and all future content requests

are served directly from the intermediate node.
In order to proof our concept, we have a implemented a

prototype described in the next section.

IV. PROTOTYPE IMPLEMENTATION

Our prototype implements the previously described the
TCP handshake interception. Furthermore, a module in the
prototype evaluates each handshake message to determine
whether it is able to handle and serve the content that is
referenced in the TCP SYN message, and only then does it
decide whether to respond to it with a payload-added SYN-
ACK message.

For our implementation we used iptables [2] and netfilter
[4] to set up rules to intercept our required packets. We
also use the library libnetfilter queue (nfqueue) [4] to allow
us to programatically set up hooks to network events. We
intercepted requests for packets on both ports 80 (the normal
port for HTTP) and 3128 (for Squid proxy caching, which we
used.)

We implemented our prototype using the Python program-
ming language and relevant network libraries for intercepting
and modifying packets. We used the nfqueue-bindings [4] and
the Scapy [5] libraries for advanced networking and packet
functionality. Our Python scripts implemented the function-
ality required for the protocol as described in the previous
section.

We ran our tests on Alcatel-Lucent (ALU) networks, and
hence ALU is considered the local network. We use a HTTP
proxy to communicate with nodes outside the Alcatel-Lucent
network.

Our setup consisted of:
• A client with a browser, whose is set up to use our on-

path CDN proxy to access the network.
• Our CDN proxy, which handles the initial TCP SYN

packet and also performs the modification of network
addresses in a manner similar to a NAT.

• Our CDN caching node, which intercepts the TCP SYN
signaling message, responds with a TCP SYN-ACK with
the node information payload, and serves the cached
content from its local storage.

• The origin server, which is the original source for the
requested content.

Of the above, we implemented the CDN proxy and the CDN
caching node. Both of these were implemented in the Python
programming language using the networking libraries listed.

One of the most interesting observations we made was with
the implementation of the network stacks we experimented
with. In order to intercept and serve content based on request,
we added payloads to the TCP SYN and SYN-ACK packets,
and correctly changed the size and the checksum on these
packets. To our surprise, the TCP SYN and SYN-ACK packets
were recieved and processed correctly by the network stack
at the sending and receiving nodes, but the subsequent data
packets were not handled properly, and we saw TCP RESET
messages terminating the session.



We found that the reason this was happening was that
the network stacks were assuming (incorrectly) that the TCP
handshake messages had a zero payload and were expecting
corresponding SEQ and ACK counters. In other words, the
operating systems’ network stack implementations completely
neglected the data size and SEQ/ACK numbers set in the TCP
handshake messages and started the SEQ/ACK numbers for
the data packets assuming a zero payload. This caused some
unexpected problems in the running of our protocol.

In order to resolve this SEQ/ACK problem, our packet
processing had to change the SEQ and ACK numbers in the
TCP packets, reducing or incrementing them as necessary
to allow the network stack to recognize them as legitimate
packets.

V. PERFORMANCE EVALUATION

For our performance measurements, we measured the net-
work latency using the round-trip-time delay from one control
node to four content servers that we worked with during the
course of our experiments.

A. Experimental setup

We used one node in the Alcatel-Lucent network as the
control node. We measured the round-trip time of TCP packets
to the following nodes:

• A node on the same subnet
• A node on the edge of the network: Alcatel-Lucent’s main

web server (www.alcatel-lucent.com)
• Cable New Network (CNN’s) main web server

(www.cnn.com)
• Akamai’s content server for CNN (ht.cdn.turner.com)

B. Round-trip time and latency
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Fig. 3. The performance graph showing the latency/delays of the four test
nodes. Latency for the edge node is far less than the latency in reaching the
content provider or its CDN network.

We used apachebench [1] to test the delays. apachebench
allows us to measure round-trip time delays for TCP signaling
messages, which are very useful for us since we want to
measure the delay in sending and receiving TCP messages.

We used Python’s scapy [5] network package for generating
the network graph, as well as validating the results from
apachebench.

The results presented in Figure 3 show that the round-trip
times for the CNN and Akamai servers are very close to each
other. We believe that this may be because our tests were
conducted in the U.S., and both servers were sufficiently close
enough in terms of network topology to respond to requests
in similar time. The interesting result is the difference in the
delay between the edge node (the Alcatel-Lucent web server)
and the CNN and Akamai servers. Our measurements indicate
that latency to the edge node is only around 50% of the latency
for CNN and Akamai; and latency for the edge node is also far
more consistent than the latency to the origin servers, whether
CNN or Akamai’s servers.

The above results show that an on-path CDN with deployed
nodes at the edge of the network can indeed substantially
reduce network latency, thus providing a far better multimedia
experience to the end user. Furthermore, we conclude that it
can reduce network congestion and other networking problems
associated with large volumes of multimedia traffic on the
Internet.

C. Processing overhead

Another important performance metric is the processing
overhead that our mechanism induces on the network nodes.
As the results of our performance measurements indicate, this
overhead is very small and is not a potential for overload.
The typical overhead for simply intercepting and checking the
content of the TCP handshake messages is in the order of 400
to 500 microseconds, and the overhead of interception and
modification of the TCP messages is in the order of 600 to 700
microseconds. Hence, the overhead added to the interception
is the range of 40% to 50%.

It is important to note that the interception is done only
on TCP handshake messages, particularly only on TCP SYN
messages on the content router. Furthermore, the payload
addition is done only for content that the router is able to
handle. And finally, our prototype was built using the Python
scripting language and a iptables/netfilter implementation that
sent packets from kernel space to user space. With an imple-
mentation in a kernel module the speed of processing packets
could be significantly improved.

VI. ALTERNATE IMPLEMENTATIONS

There are several alternate ways of implementing our on-
path method for serving content, such as by using UDP
signaling. We did not implement these mechanisms since
we believe that being able to intercept and serve content
in response to TCP message signalling is the best way to
handle content delivery on network flows that are being set
up. In addition, such methods work on an ”off-path” channel
or as control messages, and we believe the TCP intercept
mechanism allows for true content-centric networking to be
implemented on today’s Internet architecture.



VII. RELATED WORK

There has been work on intercepting content requests to
serve multimedia content from nodes on path, such as redirect-
ing requests based on predetermined criteria [19]. However,
the work is either not as comprehensive as ours or does not
have specific architecture or implementation details.

Layer 4/7 switches [3], also known as web or content
switches perform similar functionality. In contrast to our
solution, however, they have are required to keep track of every
TCP connection that they are routing. This is impractical in a
large network.

TCP interception has been enabled by Cisco on its routers.
While this seems to have been initially introduced to allow
systems to reduce TCP SYN-flooding attacks, such as Net-
Bouncer [20], it has also been used for a variety of purposes,
such as speeding up content delivery on wireless networks [7]
[15]. While we were not able to find related work using this
feature for content delivery, we believe this feature allows for
our method to be implemented on many real-world routers.

There is also some work done on content-based routing,
such as QoS routing for multimedia applications [21] and
multipath routing for unicast video [9], but these works on
multimedia routing are fundamentally different from our work
which involves intercept-based content services.

There has been a body of work in the fields of naming and
redirection. For example, i3 [13] and OCALA [12] are naming
overlays that work on top of existing Internet architectures.
The Data-Oriented Network Architecture (DONA) [14] is a
similar attempt to address the issue of Internet naming and
name resolution.

In contrast to these naming and addressing approaches,
Content-Centric Networking (CCN) [11] aims at treating con-
tent as a primitive for routing requests to the destination.
However, most of the robust work on naming, addressing
and content based routing require a clean-slate redesign of
the Internet. We believe ours is the first example of work
that enables use of signaling for delivery of multimedia
content without requiring end-to-end modification to Internet
protocols.

VIII. CONCLUSION

We have introduced the concept of on-path content delivery
networks, which are able to serve multimedia content to the
end user through signaling messages. We described our moti-
vation for developing this new architecture, and detailed how
this architecture helps in improving the network experience
for the end user, while reducing networking problems such as
congestion and latency. We have detailed the protocol call-
flows for enabling On-Path CDN, and have also described
the implementation of our prototype on existing Internet
infrastructure. We also presented performance measurements
that show how the on-path CDN is an improvement over
existing statically deployed CDNs in terms of reducing latency
and round-trip time.

Our current work implements a simple prototype of the on-
path CDN using TCP handshake signalling messages. A more

advanced version of this implementation could handle larger
and more specific URL requests, and be able to dynamically
adapt content delivery through detecting the URL in the TCP
handshake packets.

Our approach enables a new class of content networking
architectures with a large number of dynamically deployed
content nodes. This departs drastically from the existing ap-
proach of statically deployed CDN networks. New networking
models are required for this new class of CDN networks, and
we will carry out performance analysis and evaluations of this
new class of architectures in future work.
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