
Peer-to-Peer Traffic Localization as a Service
Moritz Steiner and Matteo Varvello

Bell Labs, Alcatel-Lucent, USA
{first.last}@alcatel-lucent.com

Abstract—Peer-to-Peer (P2P) file-sharing applications generate
extremely high network transit costs for the ISPs due to their
network agnostic nature. A number of strategies have been
deployed to localize P2P traffic, mostly relying on the commu-
nication between the peers and the directory servers (trackers).
However, recently many users favor distributed tracking based
upon Distributed Hash Tables (DHTs). In this demonstration, we
present the first traffic localization mechanism for DHT-based
file-sharing networks. It runs as a service in the cloud. Thus,
it does not require any equipment installation at an ISP, nor
cooperation between an ISP and P2P networks.

I. INTRODUCTION

BitTorrent is by far the most popular Peer-to-Peer (P2P)
protocol, adopted by several file-sharing applications such
as µTorrent [10] and Azureus [3]. The BitTorrent protocol
ignores the location of peers in the network when determining
how files are exchanged, thus generating a large volume of
expensive inter-ISP traffic. In the past, tracker-based traffic
localization strategies have shown they effectively reduce
BitTorrent inter-ISPs traffic [13].

Recently, BitTorrent introduced a distributed tracking fea-
ture: peers can now locate which peers hold a copy or a portion
of a file by querying a Distributed Hash Table (DHT). This fea-
ture, originally thought as a backup solution for the trackers,
is now supported by most BitTorrent client implementations
and it attracts a large share of BitTorrent user requests [11].
The addition of a DHT to the BitTorrent network decreases
from the effectiveness of tracker-based traffic localization
mechanisms.

In [11], we designed and prototyped the first traffic local-
ization mechanism for DHT-based file-sharing networks. Our
prototype targets the BitTorrent Mainline DHT [6] and can
be run as a service in the cloud. No equipment installation
is required at an ISP, nor does it require cooperation between
an ISP and P2P networks (which is unlikely to occur). This
demonstration shows the prototype used in the experimental
evaluation of [11].

II. DESIGN OVERVIEW

Our localization mechanism works in two steps. First, we
intercept all the messages from peers announcing in the DHT
that they hold a file or a portion of it. Then, we intercept all
the requests for this file and answer with local peer-sets, i.e.,
sets of peers located at the same ISPs as the requesting peers.
We now describe both steps in detail.

A single entity can join a P2P network many times with
many distinct logical identities called sybils [4]. To intercept
announces and requests for a file, we insert several sybils in the

DHT with nodeIDs close to the info hash of the file [9]. The
sybils are constantly aware of the peers that hold the file as
well as the peers requesting it. Under this premise, localization
is straightforward. Our sybils simply respond to the queries for
this file with localized peer-sets. If only a few local peers are
available, external peers are used to complete the peer-set.

Our localization mechanism targets only popular files for
two reasons. First, only the traffic associated with files re-
quested by more than one peer from the same ISP at the same
time has potential for localization. Second, we aim to minimize
the number of files to be localized. In fact, the number of sybils
we need to insert in the DHT to achieve traffic localization
scales linearly with the number of files that we localize.

III. MAINLINE IMPLEMENTATION

As a proof of concept, we implemented a prototype of our
localization mechanism for the Mainline DHT. We pick the
Mainline DHT since it has the largest user base with more
than eight million active users at any point in time. Note that
our localization mechanism can easily be ported to any other
DHT-based P2P network build upon the Kademlia protocol [8],
e.g., Azureus [3], Emule [5], and Ares [2].

We now briefly overview the relevant messages used in
the Mainline DHT. For more details, the interested reader is
referred to [6].
get_peers(I) – it performs a lookup operation, i.e.,

retrieve the list of peers holding a copy or a portion of a file
with info hash I . The lookup works iteratively. At each inter-
mediary hop of the iteration, peers respond to a get_peers
message with the IP addresses, ports, and nodeIDs of the peers
closest to I . At the final hop of the iteration, peers return the IP
addresses and ports of the peers that hold a copy or a portion
of the file with info hash I .
announce_peer(I) – it is used by a peer P to an-

nounce that it hosts a file with info hash I . P sends several
announce_peer messages to the peers in the DHT whose
identifiers are the closest to I (previously retrieved using a
get_peers message).
ping(P) – it checks that peer P is alive.
We now focus on the localization of the traffic associated

with a single file identified by info hash I .
In the first step of the localization mechanism, we intercept

the announce_peer messages for I . To do so, we insert
sybils in the DHT with nodeIDs closer to I than any real peer.
The insertion of the sybils in the DHT consists of informing
real peers whose nodeIDs are close to I about the existence



2

(a) Localization turned off. (b) Localization turned on.

Fig. 1. Screenshots of the peers a µTorrent client downloads from.

of the sybils. These peers will then propagate this information
to other peers in the DHT. We proceed as follows:

• First, we discover the peers whose nodeIDs fall within
Z, the portion of the hash-space that shares a prefix of
at least z bits with I . To do so, we send out multiple
get_peer messages with target info hashes close to I .

• Then, we send ping messages from the sybils to all
peers in Z. This operation populates the routing tables of
the nodes in Z with information about our sybils.

The information derived from the received
announce_peer messages is stored in a database
common to all the sybils. We use Maxmind [7] to resolve a
peer’s IP address to its ISP. For an entry in the database, we
use the same timeout policy as currently implemented by the
BitTorrent clients.

In the second step of the localization, we intercept the
get_peers messages for I and we reply to them with local
peer-sets. Similarly to the announce_peer messages, the
sybils also intercept the get_peers messages during their
iteration across the DHT. We construct the replies to the
get_peers messages as follows. First, we determine the
ISP of the querying peer using Maxmind. Then, we form the
peer-set to be returned by the sybil searching in the shared
database for peers located at the same ISP as the requesting
peer. In case not enough local peers are found, we complete
a peer-set with external peers.

To localize more than one file, we repeat the outlined
procedure. Resource consumption scales linearly with the
number of files to localize.

IV. DEMONSTRATION SETUP

The demonstration runs on the live Mainline DHT network
and involves: a server side, that shows the sybils running on
an Amazon EC2 [1] machine, and a client side, that shows
several clients located at different ISPs for which we enable
the localization. In the remainder of this section, we describe
both the server and client side in detail.

Server side – We strategically place the sybils in the DHT
in order to localize the traffic associated with several popular
files. In order to demonstrate that no physical installation
is required at an ISP, we run the sybils on an Amazon
EC2 machine. For each localized file we show popularity

statistics, i.e., the number of peers per ISP holding the file or
a portion of it. Performance statistics, such as incoming and
outgoing messages per second, memory and cpu utilization,
and Amazon EC2 related costs, are visualized as well.

Client side – We launch several µTorrent clients located at
multiple ISPs and we start the download of the files localized
by the sybils. For each peer the client contacts to retrieve a
file, we show its geographic location along with the connection
speed and the amount of traffic exchanged. Figure 1 shows
screenshots of a µTorrent client running in the Verizon ISP
while downloading a file with and without localization. For
each line, the first column shows the country and ISP of a
source, the second column shows the download speed, and the
third column shows the upload speed. The goal of this visual
support is to demonstrate that the BitTorrent traffic effectively
remains within an ISP. For example, the screenshot in Fig-
ure 1(a) shows that most of the traffic is non-local when the
localization is disabled, whereas Figure 1(b) shows that 100%
of traffic is kept within the ISP of the downloading peer when
the localization is enabled. Note the high download speed
that can be reached connecting to local nodes in the latter
case. During a download, we also visualize the DHT control
traffic using Wireshark [12] in order to highlight the messages
exchanged between a client and our sybils. Specifically, we
aim to show that all announce_peer messages are correctly
received by the sybils.

REFERENCES

[1] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.
[2] Ares. www.ares.net/.
[3] Azureus/Vuze. http://www.azureus.sourceforge.net/.
[4] J. R. Douceur. The Sybil Attack. In IPTPS, Cambridge, MA, USA,

March 2002.
[5] eMule. www.emule-project.net/.
[6] Mainline DHT Specification. http://www.bittorrent.org/beps/bep 0005.html.
[7] Maxmind. http://www.maxmind.com/.
[8] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer Information

System Based on the XOR Metric. In IPTPS, Cambridge, MA, USA,
March 2002.

[9] M. Steiner, E. W. Biersack, and T. En-Najjary. Exploiting KAD: Possible
Uses and Misuses. Computer Communication Review, 37(5), Oct. 2007.

[10] uTorrent. http://www.utorrent.com/.
[11] M. Varvello and M. Steiner. Traffic Localization for DHT-based

BitTorrent Networks. In Networking, Valencia, Spain, May 2011.
[12] Wireshark network protocol analyzer. http://www.wireshark.org/.
[13] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and A. Silberschatz.

P4P: provider portal for applications. In SIGCOMM, Seattle, WA, USA,
Aug. 2008.


