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Abstract

This report proposes a promising solution for constructing scalable p2p networks
based on the 3D Delaunay Triangulation (DT). The key idea of the design is
to maintain for each node a DT of the neighbour nodes. While demonstrating
scalability in a real system is not practical for the current work, we demonstrate
the scalability of the 3D DT using simulation. The results obtained indicate that
there are upper bounds on the time needed to join and on the average number
of neighbours maintained by a peer. Therefore, the amount of bandwidth and
processing requirement for each node is bound, independent of the total number
of nodes in the system.
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1 Introduction

A peer to peer (p2p) system is a network of peers that communicate with each
other. A peer is an entity in the system, usually an application running on a
device, or the user of such an application. All peers should have the same func-
tionality and be of equivalent importance to the system; no single peer should be
critical to its functionality. The characteristics of p2p systems can be summarised
as following: [Oram 01]

• Peers should be able to freely offer services to other peers.

• The addressing system should be independent of lower layer network ad-
dressing systems.

• Peers should be assumed to be of variable connectivity.

This describes some of the essential features of p2p systems. The peers should
have autonomy, i.e. be able to decide services they wish to offer to other peers.
Peers should be assumed to have temporary network addresses. They should
be recognised and reachable even if their network address has changed. A peer
can join and leave the system at its own disposal. The peers cannot necessarily
trust each other and rely completely on the behaviour of other peers because of
their autonomy. That is why issues of scale and redundancy become much more
important than in traditional (centralised or distributed) systems.
Peer to peer systems are constructed by connecting various computers (nodes)
in a mesh-like fashion, forming a virtual network on top of the physical Internet.
The term ”overlay network” is thus often used to describe p2p systems. We will
use the term p2p and overlay network interchangeably in this thesis.
Peer to peer networking is gaining more and more importance. Many new ap-
plications have ermerged (file sharing [Napster 99, Gnutella 00, eMule 02] and
Internet telephony [Skype 03]). There exist two main models of p2p systems:

• The model made popular by Napster [Napster 99], the centralised directory
model [Saroiu 02, Lv 02]. The peers of the community connect to a central
directory where they publish information about the content they offer for
sharing. Upon request from a peer, the central index will match the request
with the best peer in its directory that matches the request. The best peer
could be the one that is cheapest, fastest, or the most available, depending
on the user’s needs. Then a file will be transmitted directly between the
two peers. This model requires some managed infrastructure, the directory
server, which hosts information about all participants in the community.
This can cause the model to show scalability limits because it requires
larger servers when the number of requests increases, and more storage
when the number of users increases. However, Napster’s experience showed
that – except for legal issues – the model was very strong and efficient.
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• The flooding model [Saroiu 02, Lv 02] is different from the centralised di-
rectory model. This is a pure p2p model, in which no advertisement of
shared resources occurs. Instead, each request from a peer is flooded to
directly connected peers, which themselves flood their peers etc. until the
request is answered or until the maximum number of flooding steps is rea-
ched. This model, which is used by Gnutella [Gnutella 00], requires a lot of
network bandwidth and hence does not prove to be very scalable, but it is
efficient in limited communities such as company networks. To circumvent
this problem super node [Yang 03] client software, that concentrates many
of the requests, has been developed. This requires less network bandwidth,
at the expense of high CPU consumption. Caching of recent search requests
and answers is also used to improve scalability.

This thesis proposes a fully distributed p2p architecture which attempts to solve
the scalability problem based on the mathematical construct of the 3D Delaunay
triangulation. The proposed architecture is called 3D Delaunay Triangulation
Overlay Network (DT ON ). The main contribution of this thesis is to propose a
resource efficient solution which needs no server at all, not even for login.
It can be used as infrastructure for a Networked Virtual Environment (NVE),
to allow people to interact as they do in the real world, e.g. to speak (broadcast
audio or video) to people interested in a common topic. We believe that a
massive, persistent 3D virtual environment which allows millions of people to
participate simultaneously may eventually happen on the Internet. There are
many technical and architectural issues that need to be resolved before such a
true cyberspace can be realised. The primary among these needs is a scalable
architecture that handles large numbers of simultaneous users. The goal for this
thesis is to devise a suitable p2p architecture for constructing a NVE that can
scale to millions of users.

This thesis is organised as follows:
Section 2 shortly introduces the notion of NVE. Section 3 deals with partitioning
the virtual world; two geometrical constructs are discussed, the Voronoi diagram
and the Delaunay triangulation. Section 4 describes the data structures and
algorithms developed for segmenting the virtual world. Section 5 explains the
network protocol and points out some difficulties using in the 3D Delaunay
Triangulation as structure of a fully distributed p2p network. Finally section 6
discusses the implementation of multicast trees using the Delaunay triangulation.
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2 Networked Virtual Environments

Networked Virtual Environments (NVEs)[Knutsson 04, Hu 04] are computer-
generated, synthetic worlds that allow simultaneous interactions of multiple par-
ticipants. From the early days of SIMNET [Calvin 93], a joint project of the U.S.
Army and Defense Advanced Research Project Agency (DARPA) between 1983
and 1990 for large scale combat simulations, to the recent boom of Massively Mul-
tiplayer Online Games (MMOG) [Funcom 99, Sony 99, O2OE 98, Blizzard 04],
many efforts have been made to allow people to interact in realistic virtual en-
vironments. Most of the existing MMOGs are role-playing games, whereas first-
person shooter games or real-time strategy games are usually divided into many
small isolated game sessions with a handful of players each.
Works of science fiction , such as Neal Stephenson’s novel ”Snow Crash”
[Stephenson 92] and the Matrix movies [Wachowski 99], give an impression of
what a 3D environment that is truly consistent, persistent, realistic and immer-
sive could be like. With progression in technology, converging advances in CPU,
3D acceleration and bandwidth may make the vision come true in the near fu-
ture.
However, to create a large-scale NVE a number of problems must be solved,
namely [Knutsson 04, Oram 01]:

• Consistency - For meaningful interactions to happen, all users’ perceptions
of the virtual world must be consistent. This includes maintaining states
and keeping events synchronised. The inherently distributed nature of peer
networks makes it difficult to guarantee reliable behaviour. The most wi-
despread solution to ensure consistency across NVEs is to keep redundant
information in different peers. For example, in case of processing intensive
applications upon a detection of a failure the task can be restarted on other
available machines. Alternatively, the same task can be initially assigned
to multiple peers. In messaging applications lost messages can be resent
or sent along multiple paths simultaneously. Finally, in file sharing appli-
cations, data can be replicated across many peers. In all serverless p2p
systems, states about neighbours and connections must be kept in different
peers to ensure the consistency after the crash of one or more peers.
Zhou et al. [Zhou 04] classifies NVE event consistency into two main groups:

– Casual order consistency - Events must happen in the same order as
they occur, as humans have deeply-rooted concepts about the logical
order of sequence of events.

– Time-space consistency - In an NVE system, messages are sent to
notify for position updates. However, due to network delay and clock
asynchrony among computers, it is possible for hosts to receive updates
with different delays and thus interpret the order of events differently.
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Inconsistencies therefore could occur for entity positions at a given
logical time.

Note that casual order consistency and time-space consistency are not ne-
cessarily related to each other (i.e. it is possible to preserve casual order
consistency but violate time-space consistency). This problem is particu-
larly evident when predications are used to compensate missing updates.
On the other hand, in p2p networks the concept of consistency generally
refers to what may be called topology consistency, which is whether each
node in the p2p system holds consistent views of the parts of the network
they share (note that each node only maintains a local view of the complete
topology).

• Scalability is usually concerned with the number of simultaneous users in
NVE. One important challenge is to allow all willing people to interact in
the same environment. This is achieved by developing new systems that do
not rely on a centralised server that can fail due to overload. Moreover no
investment is needed for servers or the connection relaying them to Internet.
The nodes only know the nodes in their attention radius. While the virtual
world is infinite, in this radius the number of peers is limited. A trade-off
has to be made between knowing enough neighbours to interact and not
keeping connections open to too many neighbours.

• Reliability and fault resilience is important to make NVE a service with
quality. To ensure this point peers may need some redundant information
to cope with a crash of one or more neighbours. One of the primary design
goals of a p2p system is to avoid a central point of failure. Although most
p2p systems (pure p2p) already do this, they nevertheless are faced with
failures commonly associated with systems spanning multiple hosts and
networks: disconnections / unreachability, partitions, and node failures.
These failures may occur more often in some networks (e.g. wireless) than
in others (e.g. wired enterprise networks). In addition to these random
failures, personal machines are more vulnerable than servers to hacking
attacks or viruses. It would be desirable to continue active collaboration
among the remaining connected peers in the presence of such failures. An
example would be an application like genome@home [Pande 01] executing
a partitioned computation distributed over connected peers. Would it be
possible to continue the computation if one of the peers disappeared because
of a network link failure? If the disconnected peer reappeared, could the
completed results (generated during the standalone phase) be integrated
into the ongoing computation?

• Performance - NVEs are simulations of the real world. Performance the-
refore is important to change the virtual world fast enough to allow the
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impression of reality and to keep the different views consistent. Because
of the decentralised nature of these models performance is influenced by
three types of resources: processing, storage and networking. In particular,
networking delays can be significant in widearea networks. Bandwidth is a
major factor when a large number of messages are propagated in the net-
work and large amounts of files are being transferred among many peers.
This limits the scalability of the system. Performance in this context can-
not be measured in the abstract millisecond level, but rather tries to answer
questions of how long it takes to retrieve a file or how much bandwidth a
query will consume. These numbers have a direct impact on the usability
of a system.

• Security is a big challenge for NVEs, especially if they use a pure p2p in-
frastructure. Transforming a standard client device into a server poses a
number of risks to the system. Only trusted or authenticated peers should
have access to information and services provided by a given node. Unfortu-
nately, the security requirement requires either potentially painful interven-
tion from the user, or interaction with a trusted third party. Centralising
the task of security is often the only solution even though it voids the p2p
benefit of a distributed infrastructure. Another way is to introduce the
notion of trust: In the physical world we trust someone who has a good re-
putation. The concept of reputation can be adopted to the p2p world: you
only trust a node you know or a node for which you got a recommendation
from a known trusted node.

• Persistency - To create sophisticated contents, certain data such as user
profile and valuable virtual objects must be persistently stored and accessed
between user sessions. An example of an virtual object may be a bar where
people can meet. This information is in most cases stored on a central
server, to allow the users to log into the virtual world with the same identity
from different computers.

We consider scalability to be the most important issue if we plan to build truly
massive worlds and applications, which millions of people can participate in and
enjoy. Therefore, this thesis focuses on finding a solution for the scalability pro-
blem in NVEs. Existing approaches to improve scalability mainly rely on enhan-
cing server capacity in client-server architecture. Further scalability is achieved
by clustering servers and by dividing the game universe into multiple different,
or parallel, worlds and spreading the users over them. However, client-server
architecture has an inherent upper limit in its available resources (i.e. processing
and bandwidth capacity) and is expensive to deploy and to maintain. P2p ar-
chitecture has emerged in recent years to an alternative that promises scalability
and affordability. We attempt to apply p2p architecture to NVE design, in hope
that it may solve the scalability problem.
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In the following two existing NVE systems without central server or super-nodes
are presented.

2.1 Solipsis

Solipsis was developed by Joaqúın Keller and Gwendal Simon at France Telecom
[Keller 04, Keller 02, Keller 03, Simon 04]. It focusses on the first four require-
ments mentioned above. Security and persistency are not taken into account,
because they can’t be solved properly without a centralised instance.
Solipsis intends to be scalable to an unlimited number of users and to be acces-
sible by any computer connected to the Internet. It does not make use of any
server and is solely based on a network of peers. In the implemented version the
interaction is restricted to chat, but the system could be enhanced, e.g. by audio
and video broadcast to the neighbouring peers. Furthermore it allows its virtual
coordinates to be changed by walking or by using the teleportation mechanism.
Solipsis maintains direct connections among neighbours (latency is thus minimi-
sed). Specifically, it requires that each node must be inside a convex hull formed
by its neighbours in 2D plane (Figure 1). This way the topology is guaranteed

e

a) b)

e

Figure 1: All peers must be inside the convex hull of their neighbours. In situation a)
e respects this rule while it does not in b). [Keller 03]

to be fully connected (global connectivity is kept) (Figure 2). Since an incoming
node may be unknown to direct neighbours, inconsistent topology may happen
during normal operation occasionally. Proper neighbour discovery is thus not
guaranteed (local awareness is not kept, see figure 3).
To join in the virtual world of Solipsis, the peer e wishing to join has to know at
least one peer e0 of the virtual world. e0 routes the join request to the peer e1,
that is its nearest neighbour in the direction of e. The message is recursively
routed to the peer en that has no neighbour closer to the target location of e than
it is itself (Figure 4).
The join procedure then starts the second phase, trying to allocate all peers
around the desired location of e. en, believing it is the nearest to the desired
location of e, routes the message to em. If em knows a peer nearer to the desired
location of e than en the first phase starts again. Otherwise the second phase
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Figure 2: The dotted connections are due to the fact that each node lies inside a
convex hull formed by its neighbours. [Keller 03]

e

e

∆
1

2
∆

f

Figure 3: The nodes e and ef are not connected even though ef lies inside the attention
radius of e. [Simon 04]

continues until a convex polygon with e in its convex hull has been generated.
In some cases, proper neighbour discovery could be slow since all neighbours
around the desired location are queried (Figure 5).

2.2 SimMud

Knutsson et al. describe p2p support for MMOGs by using Pastry [Rowstron 01]
and Scribe [Castro 02], a p2p overlay and its associated simulated multicast
[Knutsson 04]. The virtual world is divided into regions of fixed size (Figure 6).
Each region is managed by a promoted super-node called a coordinator, which
coordinates the shared objects in its region and serves as the root of a multicast
tree. Therefore it is not a pure p2p model, but a hybrid one. Users inside the
same region subscribe to the same root node to receive updates from other users,
so neighbours are discovered via the coordinator. Coordinators maintain links
with each other, supporting user transition to other regions. However users
cannot perceive users in other regions. If users decide to listen to more than
one region, they will receive irrelevant messages. If too many users are inside



16 2 NETWORKED VIRTUAL ENVIRONMENTS

me
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Figure 4: A first phase to reach en, an aborted turn around em, another phase to reach
e′n and turn around e. [Keller 03]
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Figure 5: e may need various queries to discover ei. [Keller 03]

the same region the coordinator may be overloaded. Coordinators are needed to
manage persistent objects, therefore there is a backup mechanism to save this
data.
Players in a region of the game space form a multicast group and communicate
using the Scribe multicast system. When players move from one region to
another they leave the multicast group in the old region and join the multicast
group in the new region. A player may be a coordinator for a region and may
be playing in another region of the game space at the same time. But still the
player has to maintain state and handle communication for that region. Hence
in this system players maintain state for regions of game space that are no
longer close to them. As the players move in the virtual space, their region of
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Food

Player

Multicast

Multicast

Direct connection

Region 1

Region 2

Region 3

Figure 6: Fixed size regions

influence and interest continuously change, but this system does not take this
into consideration.
A more serious problem is the latency penalty incurred by using the p2p overlay.
Message updates may need to be relayed by other nodes; less than 4 hops in
most cases, but exceeding 50 in other cases — a delay of several seconds. Note
that this is ”virtual hops” on the p2p overlay, so physically it translates to more
hops.

The next section discusses how to dissect the virtual world in a way that
allows efficient methods to find peers and to join the virtual world.
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3 Partitioning the virtual world

A main problem in constructing a NVE is to partition the infinite virtual world,
so that each peer can easily find all its neighbours and the nearest peer to any
coordinate in the world can be found efficiently. Most of the existing NVEs as
for example Solipsis are based on a virtual world in two dimensions. This thesis
shows how to build a NVE in three dimensions. Therefore a structure must be
found to satisfy the specified requirements in 3D. The third dimension is needed
to make the virtual world more similar to the real world, as is seen in many
MMOGs.

The next paragraph discusses the appropriateness of the Voronoi diagram
for these needs.

3.1 The Voronoi diagram

3.1.1 The definition

The Voronoi diagram (VD) was introduced by Georges Voronöı in
1907 [Voronöı 07, Voronöı 08]; its definition in 2D [Aurenhammer 91,
Aurenhammer 00]:

Let S be a set of n ≥ 3 point sites p, q, r, . . . in the plane. For points
p = (p1, p2) and x = (x1, x2) let

d(p, x) =
√

(p1 − x1)2 + (p2 − x2)2

denote their Euclidean distance. By pq we denote the line segment
from p to q. For p, q ∈ S let

B(p, q) = {x|d(p, x) = d(q, x)}

be the bisector of p and q. B(p, q) is the perpendicular line through
the center of the line segment pq. It separates the half-plane

D(p, q) = {x|d(p, x) < d(q, x)}

containing p from the half-plane D(q, p) containing q. We call

V R(p, S) =
⋂

q∈S,q 6=p

D(p, q)

the Voronoi region of p with respect to S. By A we denote the closure
set of A. Finally, the Voronoi diagram of S is defined by

VD(S) =
⋃

p,q∈S,p6=q

V R(p, S) ∩ V R(q, S).
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Each Voronoi region V R(p, S) is by definition the intersection of n−1
open half-planes containing the site p. Therefore, V R(p, S) is open
and convex. Different V Rs are disjoint.
The common boundary of two V Rs belongs to VD(S) and is called a
Voronoi edge, if it contains more than one point. If the Voronoi edge
e borders the regions of p and q then e ⊂ B(p, q) holds. Endpoints of
Voronoi edges are called Voronoi vertices ; they belong to the common
boundary of three or more V Rs.

The same definition in a more intuitive way: Given a set S of n points on a
plane (each point called a site), VD(S) is constructed by partitioning the plane
into n non-overlapping Voronoi regions that contain exactly one site in each
Voronoi region (V R). A V R contains all the points closer to the region’s site
than to any other site. The entire plane is therefore divided into disjoint regions
in a deterministic way.
To obtain the definition in 3D simply replace 3 points by 4 points, line segment
by plane segment, halfplane by halfspace. . .

In the majority of cases the VD is introduced by the post-office problem:
the sites are traditionally viewed as post offices where customers want to post
their letters. Then, for any chosen location of a customer, the containing V R
makes explicit the post office closest to him/her.
Some of the V Rs are necessarily unbounded. They are defined by sites lying
on the boundary of the convex hull of S because just for those sites there
exist points arbitrarily far away but still closest. No vertices occur, if and
only if, all sites in S lie on a single straight line. Such degenerate (collinear)
configurations also imply the existence of regions with only one (unbounded)
edge [Aurenhammer 91].
This is only the simplest case of VDs, where the objects are points and
the distance is given by the usual Euclidean metric; all other cases (see
[Aurenhammer 00, Yvinec 98]) have no interest for the project of building a
NVE.
The VD is one of the most fundamental concepts in computational geometry.
Geometric properties and algorithms for VD have been active topics of research
for many years (about one out of 16 papers in computational geometry). The
VD has several desired properties that make it very important to applications
such as computer graphics, numerical computing and geometric optimisation.
It is very important for all these applications that the number of vertices and
edges in the VD only grows in a linear way. For example the nearest neighbour
site of any query point can be retrieved in O(log n) (the point-location problem).
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Figure 7: A simple Voronoi diagram in a plane (All 2D VDs and 2D Delaunay trian-
gulations in this paper are generated with VoroGlide [Icking 96]).

Theorem 3.1.1 The VD(S) has O(n) many edges and vertices. The number
of vertices in VD of a set S of n points in the plane is at most 2n − 5 and the
number of edges is at most 3n − 6.

The proof to this Theorem can be found in [Aurenhammer 00, Ottmann 01].

3.1.2 The data structure

Moreover there exists a very simple data structure to efficiently store the VD. It
is called Quad-Edge and has been developed by Guibas and Stolfi [Guibas 85]. It
allows for an edge-to-edge navigation through the mesh by means of its algebraic
operations. After the publication it was criticised for its relatively high storage
costs, but this is not a problem any more. But there is a simpler structure based
on a double connected edge list (DCEL) [Berg 00, Ottmann 01]. The Voronoi
edges that the breakpoints trace out, the Voronoi vertices and the pointers bet-
ween each site and the edges and vertices defining the cell of that site are stored
in a DCEL. DCELs are the usual data structures for storing planar subdivisions.
A DCEL contains a record for each face, edge and vertex of the subdivision.
The different sides of an edge are viewed as two distinct half-edges. The two
half-edges for a given edge are called twins. There is a unique next half-edge
and previous half-edge for every half-edge, as an origin and destination of every
half-edge. Three records are needed: one for the vertices, one for the faces, and
the DCEL for the half-edges.

vertex{

Coordinates

Incident edge

}
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face{

OuterComponent

}

halfedge{

Origin

Twin

IncidentFace

Next

Prev

}

4
2 3

4

51

1

2

6

3

5

Figure 8: DCEL to store the Voronoi diagram

The VD in figure 8 is stored in the following way:

vertex1 = { (1,2) | 12 } ...

face1 = { 15 }

...

halfedge54 = { 5 | 45 | 1 | 43 | 15 }

...

3.1.3 The algorithm

In two dimensions very efficient algorithms exist to compute the VD. Before
looking at the most important ones we try to constitute a lower bound for its
computational complexity.

Theorem 3.1.2 It takes time Ω(n log n) to construct VD of n points p1, . . . , pn

whose x-coordinates are strictly increasing.

Suppose that n real numbers x1, . . . , xn are given. From the VD of the point
set S = {pi = (xi, x

2
i )|1 ≤ i ≤ n} one can derive, in linear time, the vertices of
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the convex hull of S, in counterclockwise order. From the leftmost point in S
on, this vertex sequence contains all points pi, sorted by increasing values of xi.
This argument shows that constructing the convex hull and computing the VD,
is at least as difficult as sorting n real numbers, which requires Θ(n log n) time
[Aurenhammer 00].
The most important algorithms are described subsequently:

Divide and Conquer algorithm. Shamos and Hoey [Shamos 75] first presented
a worst-case optimal algorithm for computing the VD in 2D. The set of

KT

L R

Figure 9: Divide and Conquer algorithm, the subsets L and R as well as the dividing
line T and the split line K [Ottmann 01].

point sites S is split by a dividing line T into subsets L and R of about
the same sizes. During the recursion, vertical or horizontal split lines can
be easily found if the sites in S are sorted by their x- and y-coordinates
beforehand. After the split VD(L) and VD(R) are computed recursively.
The essential part is in finding the split line K, and in merging VD(L) and
VD(R), to obtain VD(S). If these tasks can be carried out in time O(n)
then the overall running time is O(n log n) and is asymptotically optimal
[Aurenhammer 91]. The merge step involves computing the edge course K
separating regions of sites in L from regions of sites in R. All the cross
edges, composing together the edge course K must cross the dividing line
T. This establishes a linear ordering of the cross edges, so it is possible to
talk about successive cross edges, the bottom-most cross edge, etc.

Plane sweep algorithm (Fortune’s algorithm). Fortune [Fortune 87] first intro-
duced the plane sweep algorithm. Its strategy is to sweep a horizontal
line — the sweep line — from top to bottom over the plane containing the
sites S = p1, . . . , pn. While the sweep is performed, information is main-
tained regarding the structure that one wants to compute. More precisely,
information is maintained about the intersection of the structure VD with
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beach-line

sweep-line

Figure 10: Plane sweep algorithm: the beach- and the sweep line l [Ottmann 01].

the sweep line l. Unfortunately this is not so easy, because the part of
VD(S) above l depends not only on the sites that lie above l but also the
part of VD(S) on sites below l. Stated differently, when l reaches the top-
most vertex of V R(pi, S) has not yet encountered the corresponding site
pi. Therefore, not all information needed to compute the vertex is known.
Instead of maintaining the intersection of VD with l, information is main-
tained about the part of VD of the sites above l that cannot be changed
by sites below l. Because the bisector of a line, in this case l, and a point
is a parabola, the boundary is a connected chain of parabola segments
whose top- and bottommost edges tend to infinity. This chain is called
the beach line. During the sweep, there are two types of events that cause
the structure of the beach line w to change: when w hits a new site and
when it arrives at the point where its two adjacent spikes intersect. The
size ofw is O(n) and the VD of n points in the plane can be computed
within O(n log n) time and O(n) space, which is optimal. The proof can be
found in [Aurenhammer 91, Aurenhammer 00]. A java applet visualising
the algorithm has been developed by Odgaard and Nielsen, it can be tested
at [Odgaard 00].

Incremental insertion. This algorithm allows — in contrast to the plane sweep
and the divide and conquer algorithms — to update the diagrams as new
points are added or deleted. A simple version was proposed by Green and
Sibson [Green 78]. The problem is to obtain VD(S), S = p1, . . . , pn, from
VD(S \{pi}) by inserting the site pi. As V R(pi) can have up to n−1 edges,
this leads to a runtime of O(n2) in the worst case. The insertion process
is better described and implemented in the dual environment of VD, the
Delaunay triangulation (see 3.2). The advantage over a direct construction
of VD(S) is that Voronoi vertices that appear in intermediate diagrams
but not in the final one need not be constructed and stored [Guibas 85,
Aurenhammer 00].
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Except the incremental insertion algorithm, all algorithms need from the
beginning as input all points of the diagram they compute. Consider every point
of the VD being a peer in a p2p network or a NVE, peers with a common border
are neighbours. Joining or leaving of a peer in the neigbhourhood would involve
the complete recomputing of the diagram. Thus we are interested in dynamic
algorithms, which allow us to update our diagrams as new points are added or
deleted. Therefore we will focus on the incremental insertion algorithm.
The join procedure is very short: One peer p of the network has to be known and
contacted, then the nearest peer n to the desired location of the peer that wishes
to join j has to be found (point location problem). Then V R(n) is divided and
the concerned neighbours are informed about the changes. It is very important
to notice, for the maintenance of the structure, that the effect of a join remains
local (Figure 11) [Araujo 01, Hu 04].

p

n n j

Figure 11: Join procedure. On the left: Forward of join request. The known peer p.
The peer n nearest to the desired location. On the right: The new peer j. Shaded
regions are neighbours affected by join.

The way in which the neighbour peers are contacted and the regions are
divided is described very well by Liebeherr [Liebeherr 02]. Briefly: The peer n
contacts its clockwise and counterclockwise neighbours and informs them about
the newly arriving peer j. They contact j and update their respective V R.
Liebeherr has also implemented this algorithm and used it to build up a p2p
infrastructure called HyperCast, which can be downloaded at [Liebeherr 03].
Only the neighbour peers are stored, not the triangles as they can be computed
from the list of neighbour peers. Unfortunately his algorithm cannot be extended
to R3, as there the notions of clockwise and counterclockwise have no meaning
in R3.
Hu and Liao have presented and implemented an algorithm to create a Scalable
Peer-to-Peer Networked Virtual Environment [Hu 04]. They also use Voronoi
diagrams to partition the virtual world. As with the implementation of Liebe-
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herr, their algorithm is only applicable to a two dimensional world, as they do
not take into account all difficulties arising from switching to 3D.

The process of inserting V Rs can be extended to R3, but the data struc-
ture becomes more complicated since the tetrahedra have to be stored as well.
It is not possible to reconstruct them from the list of neighbour peers. Regions
are convex polyhedra that can be constructed facet by facet by intersecting
existing regions with separators that are planes in this case. A V R cannot
have more than n − 1 facets (one for each different site) and thus by Euler’s
relation, has O(n) edges and vertices. Therefore, one needs O(n + t) time per
region if t facets, edges, or vertices are deleted during its insertion. Since each
component deleted has to be constructed first, an O(n2)-time algorithm results.
This is worst-case optimal since a VD in R3 may have Θ(n2) number of facets
[Aurenhammer 91]. The V Rs can become very complicated polyhedra (Figure
12), thus no efficient data structure to store the VD in R3 exists, especially the
one discussed for R2 is not applicable.

Figure 12: A 3D VD with only 20 vertices: the highlighted Voronoi region belongs to
the encircled point (All the diagrams in 3D are generated with geomview [geomview 92])

It appears that the hardest part of constructing a VD is the determination of
its topological structure: the incidence relation between vertices, edges, and
faces. Once the topological properties of the diagram are known, its geometrical
properties (coordinates, lengths, angles, etc.) can be computed in time linear in
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the number of sites. That is why the VD (especially in R3) is never calculated
directly, but via the Delaunay triangulation which is its dual. Having the
Delaunay triangulation, the VD can be calculated in O(n). This detour greatly
simplifies the computation of the Voronoi diagram [Guibas 85].
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3.2 The Delaunay triangulation

3.2.1 The definition

A simplex of dimension k is a k-polotype with k + 1 vertices, or equivalently
the convex hull of k + 1 affinely independent points. Let A be a set of k + 1
affinely independent points and S be the k-simplex defined by A. Any subset of
l + 1 < k + 1 points in A defines an l-simplex which is a face of S. Simplices
of dimension 0,1,2, and 3 are respectively called points, segments, triangles, and
tetrahedra .
A complex C is a finite set of simplices that satisfy the following properties:

1. any face of a simplex in C is also a simplex in C, and

2. two simplices in C either do not intersect, or their intersection is a simplex
of smaller dimension which is their common face of maximal dimension.

The simplices that constitute a complex are called the faces of the complex. The
faces of dimension 0 are called the vertices and the faces of dimension 1 are called
the edges. In dimension d, the faces of dimension d and d− 1 are called the cells
and the facets. Two faces of a complex are incident if one is included in the
other and their dimensions differ by one. Two vertices of a complex are adjacent
if they share a common edge, and two cells are adjacent if they share a common
facet [Boissonnat 01, Yvinec 98].

Definition 3.2.1 Let P be a set of n points in Rd. A triangulation of P is a
set of simplices whose vertices are the points of P that satisfy the following two
properties:

1. two simplices either do not intersect, or their intersection is a simplex of
smaller dimension which is their common face of maximal dimension, and

2. the simplices tile the convex hull of P .

The Delaunay triangulation (DT ) decomposes the convex hull of a point set S
into cells (triangles in R2 and tetrahedra in R3) (Figure 13). The DT is named
after Boris Delaunay who introduced it in 1934 [Delaunay 34]. It is the dual of
the VD in a graph-theoretical sense (Figure 14). In fact, a DT in 3D should
be named Delaunay Tetrahedralization [Devillers 01]: three points are needed to
define a plane (or a triangle, therefore triangulation) in space and four points are
needed to define a volume, whereof the simplest one is the tetrahedron. As the
literature almost always uses the term triangulation, we will do so as well.
The circumsphere Cabcd is the sphere defined by the four vertices abcd of a te-
trahedron Tabcd. The center of the circumsphere Cabcd (of the circumcircle Cabc in
R2) of every cell is a vertex of the VD. If these centers between pairs of adjacent
cells are connected, the resulting structure is the VD. The duality immediately
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Figure 13: A simple DT in R2 (the dual of the VD in figure 7)

Figure 14: A VD with its dual the DT . For one triangle the circumcircle is shown:
the center of this circle is a Voronoi vertex

implies upper bounds of 3n − 6 and of 2n − 5 on the number of Delaunay edges
and triangles, respectively (see 3.1.1). Whereas in 3D the number of tetrahedra
may be Θ(n2).
There are only two conditions building the DT :

Definition 3.2.2 Let P be a set of n points p1, . . . , pn in R2. The DT (P ) in 2D
is a triangulation of P where no point pi, 1 ≤ i ≤ n, lies inside the circumcircle
of any triangle.
Let P be a set of n points p1, . . . , pn in R3. The DT (P ) in 3D is a triangulation
of P where no point pi, 1 ≤ i ≤ n, lies inside the circumsphere of any tetrahedra.
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This definition implies that the cells (tetrahedra or triangles, respectively) are
not flat, otherwise their circumscribing circle or sphere is not defined. In fact,
it is always possible to build the DT of a point set S without any flat cell
[Devillers 03].

a
c

p

b

i

Figure 15: The point pi is added, it lies inside Cabc, therefore the edge bc is flipped to
api. (After the flip, the smallest angle is bigger than before.)

3.2.2 The data structure

The Quad-Edge structure (see 3.1.2) offers the advantage of describing, at the
same time, a planar graph and its dual (2D), so that it can be used for construc-
ting both the Voronoi diagram and the Delaunay triangulation. From the DCEL
of VD(S) we can derive the set of triangles constituting the DT (S) in linear time.
Reciprocally, from the set of all Delaunay triangles the DCEL of the VD can be
constructed in time O(n). Therefore, each algorithm for computing one of the
two structures can be used for computing the other one, within O(n) extra time
[Guibas 85].
The great advantage of the DT compared to the VD is, that it can be stored very
easily, even in R3, because there is only one sort of polyhedra to store (Figure
16): the tetrahedron Tabcd (the triangle Tabc in R2). The Quad-Edge structure
was extended by Dobkin and Laszlo [Dobkin 87] to three dimensions. Mücke
[Mücke 93] simplified it by removing the information needed for the dual repre-
sentation. It is based on triangles that can be traversed with a set of functions.
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Figure 16: A 3D Delaunay triangulation with only 20 vertices (the dual of figure 12):
two tetrahedra are highlighted for better visibility.

3.2.3 The algorithm

The basic component of most algorithms for the construction of the DT is the
Delaunay diagonal flip. The triangles Tabc and Tbcpi

in figure 15 form together a
convex quadrilateral. A diagonal flip replaces Tabc and Tbcpi

with Tabpi
and Tacpi

,
in effect replacing the diagonal bc with the diagonal api. The diagonal flip is a
Delaunay diagonal flip if pi is inside Cabc [Mücke 93].

Theorem 3.2.3 Among all triangulations of a given point set, the DT has the
largest angle vector.

Flipping the edges whenever possible progressively increases the angle vector of
the triangulation. Since there are only a finite number of triangulations, this
process eventually reaches a triangulation that has only regular pairs of adja-
cent cells. This triangulation is then a DT : the most compact triangulation,
it is unique. Among all triangulations, the DT maximises the minimum angle.
This implies that DT s tend to avoid skinny cells. The proof can be found in
[Yvinec 98].
At most O(n2) Delaunay diagonal flips can be performed before the triangulation
becomes the DT , and no more flip is possible. The proof of the time complexity
can be found in [Fortune 92]. The question of finding the three-dimensional ana-
log to the equiangularity property (Theorem 3.2.3) and to the Delaunay diagonal
flip is still unsettled.
As already seen in section 3.1.3, a dynamic algorithm is needed to build a p2p
infrastructure. Therefore, in this section, we will only focus on an incremental
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algorithm. First, the description is only done for the 2D case (most of the work
has already been done by describing the Delaunay diagonal flip), then we will
discuss the changes needed to extend it to 3D.
To add a site pi to the DT the problem is to compute DT i = DT ({p1, . . . , pi})
from DT i−1 by inserting pi. Let Tabc be one of the triangles of DT i−1 whose
circumcircles Cabc contain the new site pi and therefore are in conflict with pi.
They are not longer Delaunay triangles, according to theorem 3.2.2. Let bc be
the edge that lies inside the quadrilateral abcpi. A Delaunay diagonal flip has
to be done, to replace Tabc and Tbcpi

by Tabpi
and Tacpi

(Figure 15). The newly
created triangles have to be tested as well, and so on... [Aurenhammer 00]
In case no triangle is in conflict with pi the convex hull of all sites from
S = p1, . . . , pi−1 needs to be enlarged. First pi is connected to all sites from
S which it sees, that means to which there exists an edge that does not cut any
edge from DT i−1. All created edges are Delaunay edges to S ∪ pi. The opposite
edges to pi have to be checked and flipped if necessary.
The testing is done in a recursive fashion consistent with the incremental nature
of the algorithm. When a new node is inserted inside a triangle, three new tri-
angles are created, and three edges need to be tested. When the node falls on
an edge, four triangles are created, and four edges are tested. In the case of test
failure, a pair of triangles is replaced by the flip operation with another pair,
producing two more edges to test.
Heller [Heller 90] was the first to describe how to remove a site from the DT . In
his method, the set of neighbouring points of the site p to be deleted are tested,
as potential triangles, in anticlockwise order. The triangle with the smallest cir-
cumcircle is removed by swapping the edge (the inverse of the insertion algorithm
described previously) to reduce the set of neighbours of p by one, and the process
is repeated until only three triangles are left. Again as the inverse of the insertion
algorithm, p is removed and the three triangles merged into one.
This first algorithm was improved by Mostafavia, Gold and Dakowicz
[Mostafavia 03], some triangles may be removed faster, but the main idea re-
mained the same.



32 3 PARTITIONING THE VIRTUAL WORLD

The main problem in 3D is that there are some sets of points that allow different
DT s. In 2D a quadrilateral can only be divided into two triangles, and there’s
only one possible way to flip, whereas in 3D a hexahedra can be decomposed
into two or three tetrahedra. A hexahedra (Figure 17) can be separated into two

Figure 17: Two ways of triangulating a hexahedra.

tetrahedra Tabce and Tbcde (Figure 17 a) or into three tetrahedra Tacde, Tabde and
Tabcd (Figure 17 b).

Figure 18: Different DT s for one point set.

Another more complex example (Figure 18) taken from [Yvinec 98]: To T1234 the
points a,b and c are added. There are two different ways of adding these points:

T1234


T12b4

{
T1ab4

Ta2b4

T1b34

{
T1b3c

T1bc4

T1234


T1a34

{
T1a3c

T1ac4

Ta234

 Ta23c

{
Ta2bc

Tab3c

Ta2c4
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As with the VD, the DT also has degenerated cases: three or four more
points situated on a line (collinear) or on a plane (coplanar), respectively and
four or five points located on a circle in R2 or on a sphere in R3 (cospherical),
respectively. When degeneration occurs, the DT in 3D is not unique. In
general, any of the possible triangulations of the set of cospherical points can
be returned. When a point p is inserted, the set of tetrahedra conflicting with p
is determined, and these tetrahedra are deleted from the DT . If the algorithm
considers as non-conflicting the tetrahedra whose circumscribing sphere has p
on its boundary, and thus if it does not delete these tetrahedra, then we get a
unique construction of a DT . This triangulation is unique for a given order of
the points, but it depends on the order of insertion of the points. Moreover,
the incremental construction does not create any flat tetrahedron: if the point p
to be inserted is coplanar with a triangle t that is a facet of the DT , then the
two tetrahedra incident to t will have the same conflict status with respect to
p, which means that either they will both stay, and t will still be their common
facet in the updated triangulation, or they will both be deleted and t will
disappear. Thus, p will not form a flat tetrahedron together with t [Devillers 03].
A very fast algorithm to compute the DT in 3D has been developed by the
Computational Geometry Algorithms Library (CGAL) [CGAL 98]. It first
computes the triangulation of the convex hull, then adds the internal vertices
[Yvinec 98]. This implementation can build the DT of 100,000 points, randomly
distributed, in 12 seconds (on a PIII-500 and 512MB of memory) [Boissonnat 02].

The next section presents the algorithm we developed to compute the DT
in R3 in a distributed manner.
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4 A distributed algorithm for the 3D DT
No algorithm exists at present to compute the Delaunay triangulation (DT ) in
a distributed way. Distributed means that each point of the triangulation is
represented by one computer, not being aware of all other points but only of
its direct neighbours. The algorithm starts with one single point and step by
step all the other points are added and some of the tetrahedra built have to
be removed or split. This way of computing the DT signifies much more work
than the work of an off-line algorithm. Such an algorithm has to know all the
points from the beginning onwards, e.g. it first calculates the triangulation of
the convex hull and then proceeds towards the points in the center. Furthermore
an off-line algorithm can’t add or remove a point, after a change it has always
to restart the whole computation from the beginning.
First a simulation of the algorithm was developed; then it was distributed over
different computers to form the infrastructure for a real p2p network and later
on a NVE.
As programming language Java was chosen, to establish the possibility of
running the application on mobile devices such as mobile phones or PDAs.
For the simulation no communication between the nodes representing the points
of the triangulation is needed; each node is an object (and not a computer)
and each tetrahedron as well. Changes on a node are directly noticed by its
neighbours. But the main problem remains: All nodes only know their direct
neighbours and not all nodes of the triangulation. Therefore it is very difficult
to keep the view of all nodes coherent. In addition no tetrahedra may appear
more than once and all neighbouring tetrahedra must know each other as well
as their common plane.
To visualise the DT as well as some other information (e.g. the convex hull)
geomview [geomview 92] is used.

First the data structure is described, together with the most important
methods to navigate in it, then the two main methods to build and maintain
a DT are discussed: add and remove (join and leave from a points/peers
point of view). Following that a major problem in computing triangulations is
described: the lack of precision and therefore the possible failure of tests that
lead to inconsistent triangulations. Finally some test and validation methods
are presented as well as the simulation results.

4.1 The data structure and the basic methods

We do not use any of the data structures presented in section 3.1.2 and section
3.2.2, but one easier to navigate in, even though some information are redundant.
There are two main objects in this structure: the Tetrahedron and the Node.
They refer to each other: The tetrahedra have references to the node, they are
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made of, and the nodes have references to the tetrahedra they are part of. All the
other objects have only a supporting function, e.g. the Vectors and Lines which
are basically needed to calculate the center of the circumsphere of a Tetrahedron

and to represent a Plane by its normal vector starting from three Points or Nodes.

• A Tetrahedron is the main object to store the triangulation. It is composed
of its four vertices stored as Nodes and its circumsphere stored as Sphere

which consists of a Point for its center and its radius. Furthermore it
knows its four facets stored as Planes and its four neighbour tetrahedra
(Tetrahedron). This allows the navigation in the triangulation.

• A Node knows its own position stored in a Point and maintains a list of its
neighbour Nodes and a list of the tetrahedra (Tetrahedron) it belongs to.
These references allow the navigation in the triangulation.

• A Plane represents a 3-dimensional plane. A Plane is described by a unit
Vector and the perpendicular distance of the plane from the origin. The
absolute direction of the plane Vector is important, giving it a direction
(back and front faces). Moreover, if the Plane was created from three Nodes,
they are stored as well. The boolean onConvexHull indicates whether the
Plane is on the convex hull of the triangulation.

• A Line represents a 3-dimensional line. A line is a vector which is located
in space. It is described by a unit Vector and a Point on the line. Any
point on the line can be used, and it could change during the existence of a
calculation without affecting the integrity of the Line, e.g. Point= {1, 1, 1},
Vector= {1, 0, 0} is the same Line as Point= {2, 1, 1}, Vector= {1, 0, 0}.
However the absolute direction of Vector is important, giving the Line a
direction.

• A Point represents a 3-dimensional point. As well as the Plane and the
Line it is one of a set of primitives which can be combined to create and
manipulate complex 3-dimensional objects.

• A Vector has three components giving it a length and a direction in R3

(whose sign is important), but no position. Vectors are often normalised to
unit length. Vectors and Points are very closely related and can sometimes
be used interchangeably or there are equivalent routines or they can be
converted using cross-constructors. A Point has a position and cannot be
normalised.

Before specifying the two most important procedures, that allow nodes to join
and to leave the triangulation, some of the basic helping methods are described.
They answer the standard geometrical questions asked during the building of a
triangulation, such as
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• What is the distance between that line and that point?

• Are these two points on the same side of that plane?

• Do those two tetrahedra have a common plane?

• Where is the center of that tetrahedron?

• Do those two tetrahedra overlap?

Methods of the Tetrahedron:

Procedure Plane getCommonPlane(Tetrahedron tetra )

N ← this.nodes

M ← tetra.nodes

C ← null /* variable to store the common points */
c ← 0 /* number of common points found */
for i ← 0 to 3 do

for j ← 0 to 3 do
if N [i]==M [j] then

if c == 4 then Return: error, four common points
C [c ] ← N [i]
c ++

endif
endfor

endfor
if c 6= 3 then Return: error, no common plane between the tetrahedra
Return Plane(C [0],C [1],C [2]);

Procedure boolean liesInside(Node node )

N ← this.nodes

P ← null

for i ← 0 to 3 do
P ← this.getPlane(i)

if not P.isOnSameSide(node out of N that is not on P , node) then
Return false

endif
endfor
Return true
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Procedure boolean overlap(Tetrahedron tetra )

N ← this.nodes

M ← tetra.nodes

P ← this.getCommonPlane(tetra)

if this==tetra then Return true
if P 6= null then

if P.isOnSameSide(node out of N that is not on P, node out of M that
is not on P) then

Return true
endif
else Return false

endif
else Return false

• Point center() In all algorithms computing the DT , the inCircle test is
the most expensive operation. That is why we split it into two parts: first
the center and the radius of the circumsphere is computed. This is only
done once for each tetrahedron. Every time when it is necessary to check
if a node lies inside the sphere, only its distance to the center has to be
measured and compared to the radius. This is the second part. For the
construction of a DT of 100 uniformly distributed sites (and approximately
500 tetrahedra), this part is executed a 100,000 times, whereas the first part
is executed only 5000 times.

• boolean equals(Tetrahedron tetra)

Methods of the Node:

Procedure Node nearest(Node node )
nearest ← node

distance ← this.getDistance(node)

nearest ← node

foreach n in node.getNeighbourNodes() do
if n.getDistance(this) < distance then

distance ← n.getDistance(this)
nearest ← n

endif
endfch
Return nearest

• Node[] getNeighbourNodesOfDegree(int n) This recursive method re-
turns not only the direct neighbours of a Node, but also the neighbours of
its neighbours and so on...
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• Tetrahedron[] getNeighbourTetrasOfDegree(int n) This recursive
method uses the getNeighbourNodesOfDegree method. It returns all
Tetrahedra to which one of the Nodes of step 1 belongs to.

Methods of the Plane:

Procedure boolean isOnSameSide(Node na, Node nb )

dista ← this.getDistanceFromNode(na)

distb ← this.getDistanceFromNode(nb)

if (dista ≥ 0 and distb ≥ 0) or (dista ≤ 0 and distb ≤ 0) then Return
true

else Return false

• double getDistanceFromPoint(Point point)

• Point getIntersectionWith(Line line)

• Point getIntersectionWith(Plane pl2, Plane pl3)

• Line getIntersectionWith(Plane pl2)

Methods of the Line:

• Point getClosestPointTo(Point point)

Methods of the Point:

• double getDistanceFromPoint(Point point)

Methods of the Vector:

• Vector cross(Vector vector)

• double dot(Vector vector)

• Vector normalise()

• double getLength()

There are a lot of other helping methods, but they basically refer to one or
more of the shown methods. The documentation of all of them can be found at
[Steiner 05].

In the following the methods for joining and leaving the triangulation are
described.
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4.2 Join the triangulation

Thanks to the helping methods we can now focus on the details arising from
the Delaunay triangulation. First of all the algorithm for the join procedure is
described in prose, before developing the pseudo code for it and discussing the
difficulties experienced.

The node wishing to join needs to know one node that belongs to the
DT to execute the join procedure. The nearest node to the desired location
is searched by recursively travelling through the DT . The first node of the
triangulation has no neighbour. After the join of the second node, each of them
has one neighbour. Not until four nodes are present, is the first tetrahedron
built.
For all following nodes it has to be checked if the node lies inside a sphere of at
least one existing tetrahedron or if it lies completely outside of the triangulation.
In the first case all tetrahedra in whose sphere the joining node lies have to been
split:

Figure 19: Four new tetrahedra Tabce, Tabde, Tacde, Tbcde resulting from splitting Tabcd

with e.

• If the joining node lies inside one tetrahedron (not only inside its sphere)
the split creates four new tetrahedra (Figure 19).

• If the new node lies outside the tetrahedra (but inside its sphere) only two
or three new tetrahedra are created (Figure 20 and figure 17, see 3.2.3).

In the second case (if the joining node lies outside any existing tetrahedron) the
convex hull of all nodes has to be enlarged.
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Figure 20: Split with two resulting tetrahedra: three points lie on both spheres, the
two remaining ones lie only on one sphere each.

In order to keep the join procedure short, first the split and the enlarge convex
hull procedure are defined.
The split procedure belongs to the class Tetrahedron and splits an existing
tetrahedron by adding a new point inside its circumsphere.
The enlarge convex hull method belongs to the class Node and enlarges the convex
hull of the triangulation by adding a new point that does not lie inside any point’s
circumsphere.
Thanks to those two major procedures the whole join procedure is very short.
It uses a recursive approach to search the node nearest to the desired position,
therefore the argument node is the only node of the DT known before the first
execution of the procedure. In the following recursive calls node is the respective
nearest neighbour to the desired location of the argument node from the previous
call (see procedure Node nearest).



4.2 Join the triangulation 41

Procedure Tetrahedron[] split(Node newNode )

N ← this.nodes

tetras ← null /* variable for the min. 2 and max. 4 tetrahedra resulting
from the split */
for i ← 0 to 3 do

tetras [i] ← Tetrahedron(N [i%4],N [(i+1)%4],N [(i+2)%4],newNode)
if the points are collinear then

tetras [i] ← null
endif
if not newNode.liesInside(this) then

if N [(i+3)%4].liesInside(this.getSphere) then
tetras [i] ← null

endif
endif

endfor
Update the neighbour relationship between the 5 nodes (the four nodes of
this and newNode)
Update the list of tetrahedra of the 5 nodes
Update the tetrahedra neighbourship relations between tetras
for i ← 0 to 3 do

if this.getPlane(i).isOnConvexHull() then
for j ← 0 to 3 do

for k ← 0 to 3 do
if tetras [j].getPlane(k)==this.getPlane(i) then

tetras [j].getPlane(k).setOnConvexHull(true)
endif

endfor
endfor

endif
endfor
Return tetras
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There are two main difference between the 2D algorithm presented in section
3.2.3 and the one we developed for the 3D case:

• In 2D a recursion is needed that checks if the triangles, created by the
Delaunay flips, are in conflict with any point. In 3D the recursion is not
needed: all the tetrahedra of the neighbour nodes are checked, but the
error does not propagate as it does in 2D. Many tests showed this fact, but
unfortunately we cannot prove it.

• In 3D the order of inserting plays a role, as the DT is not unique for different
orders of insertion (Figure 18). Therefore, if two new nodes arrive at about
the same time, the order in which these events are noticed by the concerned
nodes must always be the same (see 5.1).

Because there is no recursion in 3D it is very easy to prove that the algorithm
halts. In the main loop only a finite number of tetrahedra is chosen to be checked;
of those some are destroyed. The new point is inserted and the DT is repaired,
and at this stage the join algorithm stops. At the worst case — all points are
situated on the surface of a sphere and the new points lies exactly in the middle
of that sphere — all points of the DT are concerned and therefore all tetrahedra
are checked and destroyed. But also in this case it is obvious that the loop halts.
Consider for the pseudo code of the join procedure that the DT contains more
than four nodes.
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Procedure void enlargeConvexHull(Node nearestNode,

Tetrahedron[] tetras )

this /* is the new node */
nearestNode /* is the node nearest to this */
tetras /* are the concerned tetrahedra of the DT */
newlyCreated ← null /* variable for the created tetrahedra (needed to
update the relations between them) */
tetra /* the added tetrahedron */
for i ← 0 to tetras.length do

for j ← 0 to 3 do
if tetras [i].getPlane( j).isOnConvexHull() then

if not tetras [i].getPlane( j).contains(this) then
tetra ← Tetrahedron(tetras [i].getPlane(j), this)
if inCircleTest(tetra,nearestNode.getNeighbourNodes())
then

if inCircleTest(tetra,nearestNode) then
if not tetra.overlap(tetras) then

Update the neighbour relationship between
tetra.getNodes()
tetra.addNeighbour(tetras [i]) /* convex hull is
updated as well */
tetras [i].addNeighbour(tetra)
updateNeighbours(newlyCreated,tetra) /*
updates the tetrahedra relationship between all
combinations of elements of newlyCreated and
tetra. In case some of them overlap the older one
is deleted */
newlyCreated.add(tetra)

endif
endif

endif
endif

endif
endfor

endfor
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Procedure void join(Node node )

/* this is the node wishing to join */
nearest ← this.nearest(node)

if nearest==node then
tetras==node.getNeighbourTetrasOfDegree(2) /* returns the
tetrahedra of node and of its neighbour nodes */
liesInside ← false /* true if this lies at least inside one sphere */
newlyCreated ← null /* variable for all the newly created tetrahedra
by the execution of the split and enlargeConvexHull methods. */
for i ← 0 to tetras.length do

if this lies inside sphere of tetras[i] then
oldNeighbourTetras ← tetras[i].getNeighbours()

oldNeighbourNodes ←
tetras[i].getNeighbourNodesOfDegree(2)

removeTetra(tetras[i])

newtetras ← tetras[i].split(node)

check(newTetras,oldNeighbourNodes) /* performs the
inCircle test with all combinations of elements of newTetras
and oldNeighbourNodes. If it fails the affected tetrahedra is
deleted. */
check(oldNeighbourTetras, this)

updateNeighbours(oldNeighbourTetras, newTetras) /*
updates the tetrahedra relationship between all combinations of
elements of oldNeighbourTetras and newTetras. In case
some of them overlap the older one is deleted */
updateNeighbours(newTetras, newlyCreated)

newlyCreated.add(newTetras)

liesInside ← true
endif

endfor
if not liesInside then

enlargeConvexHull(node,

node.getNeighbourTetrasOfDegree(2))
endif

endif
else

join(nearest)
endif
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4.3 Leave the triangulation

The leaving node creates a hole in the triangulation. This hole has to
be filled with tetrahedra composed of the neighbours of the leaving node
[Guibas 04, Mostafavia 03]. The leaving node informs all its neighbours and
computes the needed tetrahedra. These are sent to its neighbours. They have
already deleted the tetrahedra which are no longer needed, so that the DT is
once again in proper style.
The hole is enclosed by triangles, the remaining parts of the des-
troyed tetrahedra. Unfortunately not all newly created tetrahe-
dra contain one of these triangles, therefore the inside of the hole
must be triangulated without any help from the existing structure.

Procedure void leave

foreach n in this.getNeighbourNodes() do
newlyCreated ← null

n.removeNeighbourNodes(this)
foreach tetrahedron t in n.getNeighbourTetras() that contains
this do removeTetra(t)

common ← common neighbours of this and node

forall the combinations n1,n2,n3 of nodes out of common do
newTetra ← new Tetrahedron(n1, n2, n3, n)

if check(newTetra, node.getNeighbourNodes()) then
if check(newTetra, this.getNeighbourNodes()) then

if not newTetra.overlap(n.getNeighbourTetras())
then

Add the neighbour relations between the nodes of
newtetra

Add newtetra to its nodes n1,n2,n3,n
newlyCreated.add(newTetra)

endif
endif

endif
endfall
Update the neighbour relations between newlyCreated

updateNeighbours(node.getNeighbourTetras(), newlyCreated)
endfch
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There are mainly to options to deal with the crash of a peer c. In both of them
the peer l who notices first the crash takes the leadership, and uses the leave
procedure to repair the DT at the place of c. Therefore l has to know all the
neighbours of c.

• In the first option l asks for them, that can take some time, because the
peers that were neighbours to c can be several hops away from l. Then l
repairs the DT .

• In the second option the neighbour lists are regularly exchanged, thus the
DT can be rebuild directly.

For the implementation we chose the second option, because we wanted to mini-
mise the time needed to repair the DT (see 5.1).

4.4 Precision of computing

One major problem that appears during the execution of methods like
isOnSameSide of Plane or liesInside of Sphere is the precision. In some cases
its very difficult to say if a point lies inside or outside or on the surface of a sphere.
However this is crucial to the construction of the triangulation. A single wrong
decision makes all the building process obsolete [Shewchuk 97]. In the literature
these two methods are called Orient(a, b, c, d) — returns a positive value if d lies
below the oriented plane passing through a, b, c — and InSphere(a, b, c, d, e) —
returns a positive value if e lies inside Cabcd. — they may be implemented as
matrix determinants:

Orient(a, b, c, d) =

∣∣∣∣∣∣∣∣
ax ay az 1
bx by bz 1
cx cy cz 1
dx dy dz 1

∣∣∣∣∣∣∣∣

InSphere(a, b, c, d, e) =

∣∣∣∣∣∣∣∣∣∣
ax ay az a2

x + a2
y + a2

z 1
bx by bz b2

x + b2
y + b2

z 1
cx cy cz c2

x + c2
y + c2

z 1
dx dy dz d2

x + d2
y + d2

z 1
ex ey ez e2

x + e2
y + e2

z 1

∣∣∣∣∣∣∣∣∣∣
DT ON uses Java doubles, based on the IEEE 754 double precision numbers,
to calculate these tests. During the tests in nearly all cases their precision is
sufficient to make the right decision, while in the other cases, even if the test
fails, always the same (wrong) answer is returned. Therefore the DT has this
single error only, at least, but it doesn’t propagate itself; the triangulation is
coherent and can be used for further calculations, even if it is not a DT .
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A geometric algorithm is exact if it is guaranteed to produce a correct result
when given an exact input. An algorithm is robust if it always produces the
correct output under the real RAM model, and under approximate arithmetic
always produces an output that is consistent with some hypothetical input that
is a perturbation of the true input [Fortune 92]. Exact arithmetic is attractive
when it is applicable, because it can be employed without the time consuming
need for careful analysis of a particular algorithm’s behaviour when faced with
imprecision. On some implementations more than half the developers’ time is
spent solving problems of roundoff error and degeneracy [Shewchuk 97].

4.5 Tests and validation

To validate the topological consistency of DT ON , it is necessary to check for all
nodes if they do not lie inside the sphere of a tetrahedron. Moreover, all neigh-
bourship relations between the tetrahedra are checked: Two tetrahedra having a
common plane must cross-reference each another.
To validate the results, the output was compared to the results of the CGAL
DT algorithm [CGAL 98, Boissonnat 99], which was the only one (beside qhull
[Qhull 95, Barber 96]) to compute the DT in R3. CGAL was mainly chosen be-
cause the input and output format are easy to handle.
Several different scenarios have been tested to validate the algorithm:

1. Up to 10,000 uniformly distributed nodes.

2. Up to 1000 nodes uniformly distributed on the surface of a sphere, with
and without points in the inside. It is not trivial to get a random point on
the surface of a sphere [Marsaglia 72].
Set up a coordinate system (z, φ) where z is an arbitrary axis. (z = −r . . . r,
where r is the sphere’s radius), and where φ is the longitude, which runs
between 0 and 2π. To generate a random point on the sphere, it is neces-
sary only to generate two random numbers, z and φ, each with a uniform
distribution. To find the latitude θ of this point, note that z = r sin(θ),
so θ = arcsin( z

r
); its longitude is simply φ. In rectilinear coordinates,

x = r cos(θ) cos(φ), y = r cos(θ) sin(φ), z = r sin(θ) = z.
(x, y, z) are not independent but constrained by x2 + y2 + z2 = r2.
This case is interesting because it can help to improve the p2p networks
based on a two-dimensional structure. The 3D DT of such a set of points
builds some tetrahedra with edges going through the sphere. These connec-
tions, called wormholes or highways, allow fast traveling to far away nodes,
only reachable with many hops without these highways (Figure 21 and 22).

3. Up to 1000 nodes distributed in clusters with the Lévy Flight. Lévy in-
troduced in 1937 the so called Lévy distribution [Lévy 37]. The Cauchy
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Figure 21: DT of a set of points situated on a sphere

Figure 22: DT of a set of points situated on a sphere, only the tetrahedra containing
wormholes are plotted.

and the Gauss normal distribution are special cases of it. Based on the
Lévy distribution the Lévy Flight was developed. It produces a random
walk through the plane or the space, making many small steps and some
big ones (Figure 23). Note that the characteristic size of the system is the
size of the largest step and that the flight is self similar at higher magni-
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Figure 23: A characteristic Lévy Flight

fications. Removing the path and looking only at the turning points, we
get a distribution of points having smaller and bigger clusters (Figure 24).
This distribution is more appropriate to represent the real world, than the

Figure 24: Distribution containing 500 points with clusters resulting from a Lévy
Flight (somehow difficult to see where projected to 2D)

uniform distribution of points. The population will be always concentrated
around recently found extremum, and in the same time always few popu-
lation members will explore more distant regions of search space.
Lévy Flights have mathematical properties that discourage a physical ap-
proach. They have infinite variance and an analytical form known only for
a few special cases [Gutowski 01, Gupta 99]. Therefore the implemented
algorithm is much easier: it is based on a simple exponential distribution.
The angles are randomly chosen, as described in the part on the uniform
distribution on a sphere.
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4.6 Simulation results

We run our simulation on a Pentium 4 2.8 GHz and 1GB RAM equipped with
RedHat Linux and Java 1.4.2. We want to demonstrate the scalability of DT ON .
For this reason we chose the following metrics:

• the minimum, maximum and average number of neighbour nodes

• the maximum number of hops between to nodes

• the average computing time needed to join a node

• the number of tetrahedra created

• the number of InCircle tests performed to join a node

All these metrics were used with all three scenarios (uniform, sphere and levy)
described above. The cube containing the points has an edge length of 1000 units,
the points have a resolution of 1

100
unit. The variations in the graphs are due

to the fact, that the node locations are generated using random numbers. The
highest variations occur at the levy scenario, due to the clustering of the nodes.
The distribution of the number of neighbours shows clearly the differences bet-
ween the different scenarios. In scenario sphere, half of the nodes have only 8
neighbours or less and only 10% have more than 17 neighbours. This is more
than in 2D, where uniformly distributed nodes have on average 6 neighbours in
a DT . This is due to the longer and shorter highways .
In the scenario levy the effect of the clusters is clearly visible, more nodes have fe-
wer neighbours than in uniform — the ones on the border of a cluster — but also
more nodes have more neighbours than in uniform — the ones inside a cluster
(Figure 25 and figure 26). These results are important because the performance
of the algorithm basically depends on the number of neighbour nodes.
The average number of neighbour nodes is 15 for the scenarios uniform and levy
and 10 for sphere (Figure 27). Therefore we did not implement an attention radius
as does Solipsis (see 2.1) for example. In fact with the structure used it would
be easy to do so: instead of opening connections to the direct neighbours only,
connections are opened also to the neighbours of second degree (the neighbours
of the neighbours), or to the nodes contained by all the neighbour tetrahedra of
the tetrahedra containing the considered node.
The main loop of the join procedure finds, among all possibly concerned tetrahe-
dra, those to destroy. Similar to the number of neighbour nodes, the number of
tetrahedra destroyed varies for the different scenarios (Figure 28). The number
of tetrahedra created is also lower for scenario sphere than for the other ones.
This is due to the fact that nearly all tetrahedra are created on the surface on
the sphere and only very few inside it (Figure 22).
Because of the clusters in the levy scenario, the computation of the DT needs
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Figure 25: The distribution of the num-
ber of neighbours in a DT of 1000 nodes
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of 1000 nodes for the different scenarios.
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Figure 27: The average number of neighbour nodes depending on the number of nodes
in the DT for the different scenarios.

more inCircle tests (Figure 29). Inside a cluster the nodes are very dense, hence
at the border of a cluster the circumspheres of the tetrahedra can be very large,
which results in the destruction of many tetrahedra.
The maximum number of hops between two nodes is very low and grows logarith-
mically with the number of nodes. It is nearly identical for all scenarios (Figure
30, note the logarithmic scale).
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Figure 28: The number of tetrahedra destroyed to join one node to the DT depending
on the number of nodes in the DT for the different scenarios. (averages of 10 runs)
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Figure 29: The number of inCircle tests achieved to join one node to the DT depending
on the number of nodes in the DT for the different scenarios. (averages of 10 runs)

The time to join a node to the DT is bounded: as one can clearly see, the join of
a node has only a local effect (Figure 31). The scalability of DT ON is therefore
ensured.
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Figure 30: The maximum hopcount depending on the number of nodes in the DT for
the different scenarios.

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000

m
ill

is
ec

on
ds

nodes

uniform
sphere

levy

Figure 31: The time to join one node to the DT depending on the number of nodes
in the DT for the different scenarios. (averages of 10 runs)

The next section presents a fully distributed p2p structure based on the specified
algorithm and data structures.
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5 A fully distributed p2p structure based on the

3D DT
The algorithm described in the previous chapter provides the logic needed to build
a Delaunay triangulation in 3D with the computers participating in the peer to
peer network acting as points. In order to distribute it on different computers,
and not only to simulate that distribution, as in the last section, a communication
layer has to be added.
First the protocol of this layer is described with its different message types, then
two major problems are discussed: the coherence of the triangulation during and
after the concurrent execution of more than one task and the crash of a peer and
the involved repair of the triangulation.

5.1 The protocol

The protocol has 16 different message types to inform neighbour peers about
changes or to gather information.

JOIN Requests a Peer object starting from an IP address and a port. This is
always the first message from a peer aiming to join the networks.

NEIGHBOURNODES Requests the list of the neighbour nodes of the receiver.

NEIGHBOURTETRAS Requests the list of the neighbour tetrahedra of the
receiver.

ADDNEIGHBOURNODE Adds a neighbour node to the receiver.

ADDNEIGHBOURTETRA Adds a neighbour tetrahedron to the receiver.

REMOVENEIGBOURNODE Removes a neighbour node from the receiver.

REMOVENEIGBOURTETRA Removes a neighbour tetrahedron from the re-
ceiver.

FINISH Only for debugging: prints all neighbour nodes and tetrahedra to a file.

LOCK Locks the receiver for other operations.

JOINED Asks if the join procedure of the receiver is completed.

CLEARNEIGBHOURNODES Deletes all neighbour nodes from the receiver.

SEARCH Searches (recursively) a node closest to a given position. If the receiver
is closer to the given position than any other peer the search stops.

HEARTBEAT Sends a heartbeat message.
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MESSAGE Sends a simple text message.

UPDATENEIGHBOURNODE Sends the list of all neighbour nodes to all neigh-
bour nodes after a change. This ensures absolute coherence needed in case
of a crash, but slows down all operations.

UPDATENEIGHBOURTETRA Sends the list of all neighbour tetrahedra to all
neighbour nodes after a change.

It is crucial for the coherence of the virtual world, to locally accept only one
alteration at a time. For example two peers may join or leave the network at
the same time only if they do not alter the same nodes or tetrahedra. Otherwise
the two (or more) peers would create or destroy tetrahedra or peer relationships
without knowing about the actions of the other one. That would inevitably lead
to an inconsistent triangulation. To avoid this all peers involved in a join or
leave procedure are locked for other procedures. They can still perform actions,
e.g. send messages, but they cannot alter the triangulation. This approach is
comparable to the lock mechanisms implemented in database systems to allow
transactions to conform with the ACID paradigm.
The peer that wants to join tries to lock all involved nodes. If it doesn’t succeed,
it unlocks them and retries after a randomly chosen time out of a defined interval
to avoid deadlocks. Furthermore it has to wait until all involved nodes have
finished their own join procedure and are a part of the triangulation. After the
successful join, it unlocks the locked nodes.
In the case of a crash of one of the peers, the other peers have to take notice of it.
Therefore heartbeat messages are sent to the neighbours. If one peer notices that
it has not received a heartbeat message from one of its neighbours for a certain
time, it tries to reestablish the connection; if this fails it takes over the leadership
of the involved peers. The peer locks all the neighbours of the crashed peer
and executes the leaving procedure (see 4.3) for the crashed peer. The former
neighbours are disconnected from the crashed peer and the DT is rebuilt. Then
the locked peers are unlocked again.
In 2D this precaution is unnecessary since there exists only one unique DT , so
the order the peers connect to the network does not play a role (see 3.2.3).

5.2 Tests

The results of the application could not be checked in the same way as the
simulation’s results, because there is no global view of all nodes and all tetrahedra.
Each peer has its own view of the virtual world containing its neighbours (Figure
32 and 33).
To obtain a global view, all peers write the tetrahedra they know in a common
file (Figure 34). This file is then compared with the output of the simulation or
the CGAL output.
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a

Figure 32: Local view of the DT by peer
a.

b

Figure 33: Local view of the DT by peer
b.

a

b

Figure 34: Global view of the DT obtained by superposing all local views.

The network protocol was tested on up to 40 computers in the Eurécom student
computer pool. The most important measurements have already been done on
the simulation, except for one that cannot be done without real communication
between the peers: the overhead measurement. The peers in the simulation
are only Java objects, not independent applications, hence they do not need a
protocol to communicate and the protocol overhead cannot be measured.
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The size of the protocol messages is around 500 bytes. The number of messages
sent increases with the number of neighbours. As shown in section 4.6 the
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Figure 35: The number of messages sent to join a peer, depending on the number of
peers present in the network.

average number of neighbours is 15. This number is only reached if more than
100 peers are connected. Therefore the number of messages does not tend to an
upper bound with only 40 peers (Figure 35).

5.3 A comparison to other fully distributed p2p struc-
tures

In terms of design concepts, DT ON is most similar to Solipsis, where each
node maintains a certain number of neighbouring nodes (according to some
rules), and neighbour discovery is done by mutual collaboration. Both
make direct connections among peers, which makes message transmission
efficient. Both are fully distributed, so do not need to worry about super-
node failure or overloading a particular node. The key difference between
DT ON and Solipsis lies in which information about neighbouring nodes are
maintained. In Solipsis the rule is that each node must be contained within
a convex hull formed by its neighbours (refer back to figure 1). However,
there are cases where Solipsis may not discover a neighbour properly (refer
back to figure 3), yet the same scenario would not happen for DT ON . The
join procedure of DT ON is much shorter than that one of Solipsis; the
nearest peer to the desired location from the node that wishes to join is
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found in a few steps (Figure 30), whereas Solipsis needs many queries (see
2.1 and especially figure 4).

SimMud [Knutsson 04] is also a scalable system. However, its main problem
is the additional latency introduced by the super-nodes (coordinators). In
SimMud all messages must first be sent to the coordinator before the coor-
dinator dispatches them to the affected nodes individually. This results in
increased loading for coordinator nodes and increased latency due to relay
by the coordinator nodes. Furthermore back-up mechanisms for the coordi-
nators must be provided in case that they fail. Whereas DT ON would not
overload any particular node, as the system is fully distributed, so no single
node bears more responsibility and work than another node. Latency is mi-
nimised as all peers may direct connect to each other, without any message
relay. Also, because there is no super-node, no special back-up or recovery
mechanism is needed. However, by centralising certain aspects of message
delivery, SimMud is able to leverage message compression and aggregation
techniques to reduce bandwidth consumption. Furthermore SimMud deals
with persistent data, a feature that neither DT ON nor Solipsis have, which
is the main reason for the complicated backup mechanisms.

The next section discusses how to efficiently build multicast trees using the DT
structure.
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6 Multicast Trees

Multicast transmission of data eliminates duplicate data packet copies that would
otherwise traverse those links that are common to two or more of the source to
receiver shortest paths. Therefore a multicast tree is needed. In this section we
show how to efficiently calculate a multicast tree using the structure of the DT .
To do so, first two basic notions are explained: Minimum spanning trees and
Overlay Multicast.

6.1 Minimum spanning trees

Given a connected, undirected graph, a spanning tree of that graph is a subgraph
which is a tree and connects all the vertices together. A single graph can have
many different spanning trees. We can also assign a weight to each edge, which
is a number representing how unfavourable it is, and use this to assign a weight
to a spanning tree by computing the sum of the weights of the edges in that
spanning tree.
A minimum spanning tree or minimum weight spanning tree is then a spanning
tree with weight less than or equal to the weight of every other spanning
tree. One famous algorithm to compute a minimum spanning tree for a
connected weighted graph was developed by Prim [Prim 57]. It works as follows
[Cormen 01]:

create a tree T containing a single vertex, chosen arbitrarily from the graph
create a set S containing all the edges in the graph
while not every edge in S connects two vertices in T do

remove from S an edge e with minimum weight that connects a vertex
in T with a vertex not in T
add e to T

endw

Shamos and Hoey [Shamos 75] recognised that the edges of a minimum
spanning tree must be Delaunay edges (Figure 36). This interesting and
important property still holds. That means if the minimum spanning tree of a
point set S is built, all the edges of the tree are edges of DT (S). In fact, O(n)
time suffices to derive the minimum spanning tree from the DT [Preparata 85].
This gives, for the 2D case, an O(n log n)-time algorithm, which is optimal by
reduction to sorting n real numbers [Aurenhammer 91].
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Figure 36: A multicast tree based on the DT including the tetrahedra. Notice that
every edge of the tree is an edge of a tetrahedron of the DT .

6.2 Overlay Multicast

IP Multicast is a technique that can transmit one copy of data traffic to multiple
receivers at one time. Because it can greatly save network bandwidth consump-
tion and because many applications are inherently multicast-based, it has been a
research focus since the idea was proposed. However, for many reasons, such as
management, security, and inter-domain routing it has not been widely deployed.
Recently, many researchers have put their research focus on Overlay Multicast
where the data replication, multicast routing, group management, and other
functions are all achieved at application layer. Since Overlay Multicast does not
require changing the current Internet infrastructure, it can easily be deployed.
In dynamic node-based Overlay Multicast, the group members are self-organised
into an overlay multicast tree. In large multicast groups, frequent joining or lea-
ving events will occur. How to adapt to these changes is one of the main issues
considered. How to scalably form an efficient multicast tree is another important
issue [Wei 94, Liebeherr 02].

6.3 Multicast tree based on the DT
Assuming the nodes of the DT are uniformly distributed (scenario uniform)
Prim’s algorithm can be used almost instantly. All neighbour nodes of the source
node belong to the tree. All their neighbours are added to the tree if they are
outside the tree or if the new edge is cheaper (our cost function is the Euclidean
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distance) than the old one (in this case the old edge is removed).
It gets more complicated if the nodes are distributed in clusters (scenario levy).
First the nodes must be partitioned into clusters. Thereafter the tree of the
clusters must be computed.
Since there exist powerful clustering algorithms [Aurenhammer 91] we ignored
that problem and take the cluster allocation from the algorithm, which computes
the nodes distribution.
The data structure used for the implementation is rather simple: The main class
is the TreeNode; it has a reference to its ancestor, a TreeNode, and to its leaves,
TreeNodes. Furthermore it has a reference to the Node of the DT to which
it belongs and its weight (distance of the edges connecting it to the source) is
stored in distance. The tree itself is represented by the class SpanningTree; it
mainly consists of a reference to the root TreeNode of the tree. The Cluster,
if it is connected to the tree, has references to the TreeNode outside the cluster
where the connections come from connectedFrom and to the TreeNode inside the
cluster where the connection goes to connectedTo. Moreover its weight is stored
in distance.
There are two different approaches to computing the tree:

• The source builds the tree to a set of nodes.

• An interested node searches a path to the source. If it encounters a node
already in the tree, it stops its search. All the paths together form the tree.

First the procedures for building the tree from the source are described. The
procedure spanningTreeActive takes as argument the maximum hopcount from
the source to a receiver. Subsequently the spanningTreeInt method is recursi-
vely executed for each neighbour node until the allowed path length is reached.
Each called node checks if its cluster is already connected to the tree. If it is not,
the node is added to the tree. If the cluster is connected, it checks if the path
including the new edge is shorter than the existing connection to the cluster. In
this case the former path is removed and replaced by the new one.

Procedure SpanningTree spanningTreeActive(int n )

tree ← new SpanningTree(this) /* this is the source */
foreach node of this.getNeighbourNode() do

if not node.getCluster.isConnected() then
TreeNode leaf ← new TreeNode(node)

tree.getRoot().addLeaf(leaf)

node.getCluster().setConnected(tree.getRoot(), leaf) /*
the arguments are connectedFrom and connectedTo */

endif
endfch
spanningTreeInt(tree.getRoot(), n-1)

Return tree
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Procedure SpanningTree spanningTreeInt(TreeNode node, int n )

if n > 0 then
foreach treeNode of node.getLeaves() do

foreach node of treeNode.getNode().getNeighbourNode() do
if not node.getCluster().isConnected() then

TreeNode newLeaf ← new TreeNode(node)

treeNode.addLeaf(newLeaf)

node.getCluster().setConnected(treeNode, newLeaf)
endif
else

if tree.contains(node) then
/* cluster connected and node already in the tree */
if ancestor of node not equals treeNode then

if treeNode.getNode().getCluster() not equals
node.getCluster() then

/* ancestor is not in the same cluster than node
*/
if (treeNode.getDistance() + distance from
node.getCluster().getConnectedTo() to
treeNode ) < node.getCluster().getDistance()
then

/* the new connection to the cluster is
shorter */
node.getCluster().getConnectedFrom().

removeLeaf(node.getCluster().getConnectedTo())

treeNode.addLeaf(node.getCluster().getConnectedTo())

node.getCluster().setConnected(treeNode,

node.getCluster().getConnectedTo())
endif

endif
endif

endif
else

/* cluster connected but node not inserted in the tree */
node.getCluster().getConnectedTo().addLeaf(new

TreeNode(node))
endif

endif
endfch
if n > 1 then

spanningTreeInt(treeNode, n-1)
endif

endfch
endif



6.3 Multicast tree based on the DT 63

The clusters only have one incoming connection. All the nodes inside a cluster
are connected to the node connectedTo (Figure 37).

In the receiver option to build a multicast tree, the source is passive and
the receivers search a way to the source (Figure 38). If they encounter a node
that is already in the tree they stop their search. In the case the cluster of the
receiver is already connected, it simply opens a connection to the node of its
cluster that is connected to the outside.

Procedure void joinTree(Node node )

/* node is the source */
if this is not yet in tree then

if this’s cluster is not yet in the tree then
nearest ← neighbour of this nearest to node

if node == this then
node.treeNode.addLeaf(this)

endif
else

if nearest is not yet in tree then
/* join nearest first */
nearest.joinTree(node);

endif
nearest.treeNode.addLeaf(this)

endif
endif
else this.getCluster.getConnectedTo.addLeaf(this)

endif
else /* this is already in tree */

The source method builds a Shortest Path Tree. It is composed of the
shortest paths between the source and each of the receivers. Such a tree does
not minimise the total cost (length) of the tree. However the cost caused by the
receiver method are much higher, because once a cluster is connected to the tree
no cheaper connection is searched.
On figure 37 and 38 the two methods have been used to compute multicast trees
on the same set of 100 nodes of scenario levy. Executing both algorithms 10
times on a DT of 100 nodes of the levy scenario inside a cube with an edge
length of 100 units, showed that the tree computed by the source algorithm has
an average total length of 1169 units, whereas the tree computed by the receiver
algorithm has an average total length of 1309 units.
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Figure 37: Multicast tree computed by the source, notice the clusters. The tetrahedra
are not plotted for better visibility.

Figure 38: Multicast tree computed by the receivers, notice the clusters. The tetrahe-
dra are not plotted for better visibility.
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7 Conclusion

7.1 A possible solution to the scalability problem

We have presented a promising solution for constructing scalable p2p networks
based on the 3D Delaunay triangulation. The key idea of the design is for each
node to maintain a DT of the neighbour nodes. Although demonstrating scala-
bility in a real system is not practical for the current work (tests could only be
run on 40 computers), we have shown the scalability potential of 3D DT with
simulation results.
In the simulation, it is shown that there are upper bounds to the time needed
to join and the number of average neighbours maintained by a peer. This indi-
cates that the amount of bandwidth and processing requirement for each node
is bound, independent of the total number of nodes in the system. From this it
follows that the system is scalable.

7.2 Future work

Many fields of interest have been touched upon by this thesis but could not be
elaborated.

• The problem of precision (see section 4.4) is not really solved. If too many
nodes are in the virtual space close by, the numbers of Java are not precise
enough. However, tests with up to 10,000 nodes, having a resolution of 1

100

unit in a cube having an edge length of 100 units, were always successful.

• The movement of nodes can only be simulated by executing the leave and
join procedures, hence it is possible to move nodes within a certain area
without destroying the DT . If the node has to be moved farther, some
algorithms can be developed that are more efficient than the combination
of the leave and join method.

• As described in section 5.1, to keep the DT coherent during modifications,
the involved nodes have to be locked. This entails the sending of many
messages and consumes most of the time of the overall process. Future
research may find a way to keep the coherence without locking the nodes.

• Most of the data exchanged are serialised Java objects. Sending the data
in a smarter format could drastically reduce the average message size.

• The algorithms developed are not yet integrated into Solipsis. At the mo-
ment the research group around Keller and Simon is working on a second
version, which will be completely unitised. Thus the integration into the
new version is going to be much easier than to change the current Solipsis
code.
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• The algorithm for building multicast trees does not take into consideration
the crash of a node. Therefore heartbeat messages have to be exchanged;
if a node notices that its ancestor is crashed, it has to execute the join
procedure again to be reconnected to the tree. Its children are not affected.
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et Surfaces”, 2001.

[Boissonnat 02] J.-D. Boissonnat, O. Devillers, S. Pion, M. Teillaud and
M. Yvinec, “Triangulations in CGAL”, Computational Geo-
mety: Theory and Applications, 22:5–19, 2002.

[Boissonnat 99] J.-D. Boissonnat, F. Cazals, F. Da, O. Devillers, S. Pion,
F. Rebufat, M. Teillaud and M. Yvinec, “Programming with
CGAL: the example of triangulations”, Proceedings of the
fifteenth annual symposium on Computational geometry, pp.
421–422, 1999.

[Calvin 93] J. Calvin, A. Dickens, B. Gaines, P. Metzger, D. Miller and
D. Owen, “The SIMNET virtual world architecture”, Virtual
Reality Annual International Symposium IEEE, pp. 450–455,
September 1993.

[Castro 02] M. Castro, P. Druschel, A.-M. Kermarrec and A. Rowstron,
“SCRIBE: A large-scale and decentralized application-level
multicast infrastructure”, IEEE Journal on Selected Areas
in communications, 2002.



68 REFERENCES

[CGAL 98] CGAL, “The CGAL website”, http://www.cgal.org, 1998.

[Cormen 01] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein,
Introduction to Algorithms, MIT Press and McGraw-Hill,
2nd edition, 2001.

[Delaunay 34] B. Delaunay, “Sur la sphère vide. A la mémoire de Georges
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A Installation instructions

This section explains how to configure and install all the software. The directory
/homes/steiner is of course only an example.

A.1 geomview

Geomview [geomview 92] is needed to visualise the triangulation. It is very
helpful for debugging to see the tetrahedra and the convex hull. Geomview
does not run under any version of windows. To install it on linux OpenMotif
[OpenMotif 00] and Mesa[Mesa3d 99] have to be installed.
First download and install the packages:
$ tar -xzvf openMotif-2.2.3.tar.gz

$ rm openMotif-2.2.3.tar.gz

$ tar -zxvf MesaLib-6.1.tar.gz

$ rm MesaLib-6.1.tar.gz

Then configure and install them:
$ cd openMotif-2.2.3

$ ./configure --prefix=/homes/steiner/openMotif

$ make

$ make install

$ cd ..

$ rm -rv openMotif-2.2.3

$ cd Mesa-6.1/

$ make linux-x86

$ cd ..

The actual version 1.8.1 (from March 2001) on the geomview website
[geomview 92] is not compilable on actual linux version (8 or 9). There-
fore the beta-version 1.8.2 is needed. The easiest way to get it, is to google for
geomview-snapshot-2004-02-21.tar.gz. After downloading and unpacking it,
configure and install it like this:
$ ./configure --prefix=/homes/steiner/geomview

--with-motif=/homes/steiner/openMotif/

--with-opengl=/homes/steiner/Mesa-6.1/

$ make

$ make install

Finally the directory /homes/steiner/geomview/bin/ must be added to the
PATH.
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The simulation of DT ON outputs files that can be displayed by geomview, to
do so enter: geomview list.LIST

A.2 CGAL

According to the people working on CGAL is the only bugfree and working
algorithm to compute the DT . Therefore (and because because the input and
output format is easier to handle than that one of qhull [Qhull 95]) it is used to
verify the results of DT ON .
The installation procedure is well described on the CGAL website [CGAL 98].
A simple C++ program (cgal.C) that runs the CGAL triangulation algorithm
with points read from a file and outputs the resulting tetrahedra in a format
readable by DT ON can be downloaded at [Steiner 05]. The input file with
the coordinates has to be name points.out, the generated output file with the
tetrahedra is named tetras.out.

A.3 The simulation of DT ON
The simulation of DT ON can be downloaded at [Steiner 05]. Java 1.4 has
to be installed on the running machine. To start the simulation enter: java

-classpath /homes/steiner/Delaunay3dDistributedSimulation/classes

DtonSim

The nodes for the computation of the DT can be randomly chosen or read out of
a file. The class LevyFlight can be used to create node distributions according
to scenario 2 or 3 (see 4.5). The output can be compared to the result of another
algorithm (e.g. CGAL), to do so the results of this other algorithm have to be
stored in a file tetras.out. All the parameters have to be changed directly in
the main class DtonSim.

A.4 The distributed DT ONalgorithm

The distributed algorithm of DT ON itself can be downloaded, as well
as the simulation, at [Steiner 05]. To start it enter: java -classpath

/homes/steiner/Delaunay3dDistributedSimulation/classes Dton number.
number is needed for debug purposes. For the execution of DT ON on many
machines at once, there can be found a script named testdisb on the website.
It reads file with the list of IPs on which DT ON should be executed.
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