Measuring What is Not Ours: A Tale of 3rd Party Performance

Utkarsh Goel¹, Moritz Steiner², Mike P. Wittie¹, Martin Flack², and Stephen Ludin²

¹ Montana State University - {utkarsh.goel, mwittie}@cs.montana.edu
² Akamai Technologies, Inc. - {moritz, mflack, sludin}@akamai.com

Abstract. Content Providers make use of, so called 3^{rd} Party (3P) services, to attract large user bases to their websites, track user activities and interests, or to serve advertisements. In this paper, we perform an extensive investigation on how much such 3Ps impact the Web performance in mobile and wired last-mile networks. We develop a new Web performance metric, the 3^{rd} Party Trailing Ratio, to represent the fraction of the critical path of the webpage load process that comprises of only 3P downloads. Our results show that 3Ps inflate the webpage load time (PLT) by as much as 50% in the extreme case. Using URL rewriting to redirect the downloads of 3P assets on 1^{st} Party infrastructure, we demonstrate speedups in PLTs by as much as 25%.

1 Introduction

Content Providers (CPs) such as Facebook, Google, and others seek to attract large number of users to their websites and to generate high revenue. As a result, CPs strive to develop attractive and interactive websites that keep their users engaged. JavaScript libraries from online social networks, advertisements, and user tracking beacons allow CPs to personalize webpages based on end-users' interests, while various CSS frameworks make websites aesthetically pleasing [8, 10]. Further, webpage analytic APIs and performance monitoring tools allow CPs to monitor the user-perceived performance of their websites [9]. However, as CPs continue to evolve their websites with increasing number of features, the webpage load time (PLT) starts to increase – resulting in poor user experience [6, 13].

To speed up the delivery of static Web content to end-users, CPs make contracts with Content Delivery Networks (CDNs), such as Akamai. CDN servers are distributed deep inside many last mile wired and mobile ISPs worldwide and thus provide low-latency paths to end-users [23, 25]. Additionally, CDNs are motivated to adopt new and upcoming faster Internet technologies, such as HTTP/2 and IPv6 to achieve even faster content delivery for their CP customers [16, 19, 22]. Although CDNs are effective in reducing download times of Web objects they serve, as CPs continue to enhance their websites by embedding *external* resources that the surrogate CDN does not serve, it becomes challenging for the CDN to speed up components of webpages beyond its control [15, 17]. More generally, the usage of external resources have increased in last few years and have thus imposed a much harder challenge on CDNs to improve PLTs.

The performance of such *external* resources have been a great area of interest in the Web performance community. Previous attempts to classify *external* resources as 3^{rd} Party (3P) involves comparing object hostnames to the hostname

Fig. 1: Dependency on 3P assets.

Fig. 2: A waterfall diagram with one 3P and two 1P objects.

of the base page URL. However, such techniques often lead to inaccurate classification. For example, while the two hostnames www.qq.com and btrace.qq.com appear to be from the same party, objects from www.qq.com are served from a surrogate CDN infrastructure, whereas objects from btrace.qq.com are served from an origin infrastructure. To bring clarity to classification of 3P assets, we refer the server infrastructure that serves the base page HTML as the 1^{st} Party (1P) provider, such as a CDN provider acting as surrogate infrastructure for its CP customers. Additionally, we refer as to 3P as any asset embedded in the webpage that is not served by the same infrastructure as the base page HTML. The downloads of such assets cannot be optimized by 1P provider.

Current 3P performance analysis techniques only investigate the overall load time of 3P assets [6, 11], however, such techniques fail to investigate the existence of 3P assets on webpage critical path [27]. Moreover, previous work measures 3P performance by comparing PLTs for a webpage with and without 3P resources [3]. However, we show in Figure 1 that such techniques may not result in accurate comparison of PLTs, as removing a 3P resource may also remove other resources that are dependent on the removed resource. For example, while 50% of the 3P resources initiate download of at least one other resource on the webpage, many 3P resources initiate downloads of upto 10 other resources.

We argue that the key to minimize 3P impact on PLT is to first understand which specific 3P assets lie on webpages' critical path. In this paper, we extend our previous work of evaluating the impact of 3Ps on PLT over mobile networks [21]. Specifically, we investigate 3P impact on PLT over wired and well-provisioned datacenter networks and suggest a potential solution to mitigate their impact through experimental evaluation. Specifically, we make the following four contributions in this paper:

Analysis of webpage structure: We make extensive use of the open-source data available at the HTTP Archive [2] to expose the characteristics of $\mathcal{P}P$ assets embedded into the top 16,000 Alexa webpages [7], currently served by four major CDN providers. Specifically, for $\mathcal{P}P$ assets in each webpage in our dataset, we calculate the number of unique domain names resolved, HTTP requests sent, total bytes, and total uncompressed bytes downloaded, among many other characteristics.

Extensive Measurement: To measure the impact of 3P downloads on Web performance, we devise a new Web performance metric, 3^{rd} Party Trailing Ratio (3PTR), that represents the PLT fraction of the download time of 3P assets on webpage critical path. As shown in Figure 2, the 3PTR is the PLT

fraction that is accounted for by the sum of the download times of 3P objects whose download times do not overlap with any 1P object, as highlighted by the shaded areas. To calculate 3PTR from HTTP Archive (HAR) files, we encourage readers to experiment with http://nl.cs.montana.edu/tptr.

Next, using cellular and wired clients of Gomez Mobile and Gomez Last-Mile testbeds [4], we run several active experiments for three months in 2016 to calculate **3PTR** for hundreds of webpages and identify which *3P* resources impact PLTs. We also use measurement data from HTTP Archive to calculate **3PTR** for the top 16,000 Alexa webpages loaded from a well-provisioned datacenter network [2].

Problems Discovered and Solutions: In our analysis of 3P performance, we discover two major problems. *First*, we identify that for many webpages, *3P* assets that lie on the webpage critical path contribute up to 50% of the total PLT. To the best of our knowledge, there is currently no known best-practice as to how 1Ps could optimize 3P downloads to mitigate their impact on the PLT. **Solution:** We investigate how 1P providers could safely redirect 3P downloads onto their infrastructures for faster delivery of 3P assets. Based on our measurements, we demonstrate that rewriting 3P URLs in a way that enables 1Pservers to deliver 3P assets improves PLTs by up to 25%. The faster PLTs are achieved as rewritten URLs eliminate DNS lookups to 3P hostnames, the clients download 3P assets from 1Ps using an existing TCP connection to the 1P server, and that the 1P (surrogate CDN) servers are likely closer to clients than the 3P servers. Additionally, 1P servers could compress any uncompressed 3P assets before transferring them to clients. And finally, 1Ps could use new content delivery protocols, such as HTTP/2 and IPv6 for even faster delivery that many 3Ps do not employ.

Second, using the HTTP Archive data we identify that several 3P vendors do not compress Web objects even when clients indicate support for compression in HTTP request headers. Incidentally, we identify that some 1P providers deliver uncompressed objects as well, even when clients indicate support for compression. Our investigation suggests that this behavior is due to misconfigured HTTP response headers on 1P servers.

Solution: We made recommendations to several 1P providers, providing them with a list of URLs to configure compression for the objects that they currently serve uncompressed.

2 Data Collection

We use the open-sourced HTTP Archive dataset, an initiative by Google, Mozilla, and other industry leaders, to analyze structures of different websites [2]. The HTTP Archive data is collected using the WebPageTest framework, where webpages are loaded over virtual machines inside a datacenter [14]. The page loads are then translated into a format similar to HTTP Archive format (HAR) containing the timing data and as well as the HTTP request and response headers for each object embedded in the webpage under test.

For our analysis, we extract only the HTTP request and response headers pertaining to the top 16,000 Alexa webpages. In particular, for each requested object we extract HTTP headers indicating the response size, Cache-Control,

associated hostname, and whether the response was compressed when the client indicates support for compression in the HTTP request headers. Since many 3P assets load after the onLoad event triggered by the Web browser and since we only focus on understanding how much 3P downloads impact the PLT, we consider the measurement data for objects loaded only until the onLoad event.³

Next, for each hostname we perform a dig operation to check whether the hostname resolves to a canonical name (CNAME) associated with any of the four CDN providers we use in this study. If a hostname for an object does not resolve to a CNAME associated to the 1P serving the base page HTML, we consider that object as a 3P asset, with respect to that 1P. Additionally, if the hostname does not resolve to any CNAME, we consider that hostname as 3P for all four 1P CDN providers. While many 1P providers use anycast addressing for their CDN servers, the four CDN providers we use in this study perform DNS-based addressing and resolve hostnames to CNAMEs associated to them.

Finally, for each webpage, we calculate the total number of domain names resolved and HTTP requests sent for objects that we label as 3P. We also calculate the total number of bytes, total number of uncompressed bytes, and total number of cacheable bytes delivered by various 3P vendors by parsing the Content-Encoding and Cache-Control headers in the HTTP response, respectively. Our total dataset consists of structures for 16,000 webpages requesting a total of 1.6 M objects, out of which about 525 K (32%) objects belong to different 3P providers.

To collect measurement data pertaining to 3P impact on PLT, we conduct several active experiments using the Gomez Mobile testbed to load 60 mobile-specific webpages served by the production servers of a major CDN provider [1, 4]. We also conduct active experiments using Gomez Wired Last-Mile testbed to load a set of 376 webpages designed for larger screens from the same CDN. The selected webpages are limited to a few hundred because of the operational costs related to running Gomez experiments and that the chosen webpages are among the most popular sites served by the CDN. Next, we configure both Gomez mobile and wired clients to load each website 400 times and record the browser exposed Navigation and Resource Timing data after each page load [5, 12]. The Navigation and Resource Timing data we obtain from Gomez consists of timestamps when the page starts to load, timestamps when each object starts and finishes loading (including the time to perform DNS lookup, TCP handshake time, SSL handshake time, time to receive the first bit, and the object download time), and the timestamp when the onLoad event is triggered by the Web browser. Our configured Gomez clients also record the hostnames associated with each requested object, which we use to identify whether the object downloaded is a 3P asset or a 1P asset, similarly to how we identify this information using the HTTP Archive data. In addition to using Gomez clients, we use measurement data from the HTTP Archive to extract Resource Timing data pertaining to each object downloaded for the top 16000 Alexa webpages.

³ We refer to the time Web browsers take to trigger the onLoad event as the webpage load time (PLT) [5].

Fig. 3: Distribution of the number of DNS lookup and HTTP requests made to download *3P* assets.

Fig. 4: Distribution of total, uncompressed, and cacheable bytes down-loaded from *3P* vendors.

Such a comprehensive measurement allows us to understand the impact of 3P assets on PLTs when loaded under different network conditions, such as cellular, wired, and well-provisioned datacenter networks.

3 Exposing characteristics of 3P assets

Using the HTTP Archive data, in Figure 3 we show the distribution of the number of unique domain names resolved and total number of HTTP requests sent by clients to download 3P assets for different webpages. In general, we observe that 50% of the webpages resolve atleast 10 unique 3P domain names and issue a total of about 50 HTTP requests to different 3P vendors. For mobile clients, where radio latency and the latency to cellular DNS servers is a few hundred milliseconds, resolving multiple 3P domain names introduces significant latency to the overall PLT [23, 22, 26]. Further, such a large number of DNS lookups could result in many round trips to establish several new TCP connections to distant 3P servers – introducing additional delay to the object load times, especially during the TCP slow start phase of each connection.

Next, in Figure 4, we show the distribution of the total amount of data downloaded from 3P servers, and as well as the total number of uncompressed bytes transferred by 3P servers, when clients indicate support for compression in the HTTP request headers. 50% of the webpages download atleast 400 KB data from different 3P providers, out of which at least 40 KB of data is transferred uncompressed, and almost all of the data transferred by 3P servers is cacheable by clients or any intermediate Web proxy. The opportunity to cache 3P data allows 1Ps to compress and serve requests from their infrastructures.

4 Third Party Trailing Ratio

3P assets embedded on a webpage require multiple DNS lookups and download of hundreds of kilobytes of data, however, 3P assets that do not lie on the webpage critical path do not impact the PLT. Therefore, we investigate the time spent by 3P downloads on the critical paths of webpages. For the purposes of this investigation, we devise a new Web performance metric, 3^{rd} Party Trailing Ratio (3PTR), that represents the fraction of PLT that is spent only by 3P downloads and during which no 1P asset is downloading in parallel, as denoted by the two shaded areas in Figure 2.

To calculate **3PTR**, we employ a two step process as follows: First, using start and end timestamps of all object downloads, we calculate all non-overlapping

Fig. 7: 3PTR distributions for different webpages served to wired clients.

time intervals of 1P and 3P downloads independently [20]. Second, using the above time intervals, for each 3P interval we identify whether there is any time duration that does not overlap with any 1P interval. The sum of all such 3P time intervals results in the 3P delay. Finally, the percentage of PLT that belongs to 3P delay is referred to 3PTR.

In Figure 5, we show the 3PTR distributions for 60 webpages served by a major CDN provider, where we load each webpage 400 times from Gomez Mobile clients connected to cellular networks. For figure clarity, we sort pages along the x-axis based on the median 3PTR value. In general, we observe that 3P downloads do not impact PLT for about half of the webpages in our dataset. With these webpages, when 3P assets are being downloaded, one or more longer 1P assets are also being downloaded in parallel. Therefore, for these webpages, the 3P downloads do not lie on the critical path. However, for other webpages, 3P downloads contribute to up to 50% of the total PLT, in the median case. For these webpages, when 3P assets are downloaded, none of the 1P assets are being downloaded. Therefore, for these webpages sets are being downloaded. Therefore, for these webpages, 3P downloads lie on the webpage critical path and thus introduce additional latency to the overall PLT. Note that the variation in 3PTR in Figure 5 arises from the variation in the network conditions, or server processing time. Specifically, as the load time of a 3P asset changes, the 3PTR changes as well.

In Figure 6, we separate **3PTR** based on 3P providers. Specifically, for each 3P provider on the critical path, we show a boxplot distribution of the **3PTR** contributed by that 3P provider. From the figure we observe that while some 3P providers impact PLT of some pages by as low as 5%, other 3Ps contribute up to 40% of PLT for some webpages. Therefore, to speedup websites it is first important to understand which 3P provider impacts PLT and then mitigate its impact.

We observe similar impact of 3P on PLT when loading a different set of 376 webpages using Gomez Wired Last-Mile clients. In Figure 7, we show that the median **3PTR** is zero for about 40% of the webpages. For the rest 60% of the

Fig. 8: **3PTR** distributions for various $\mathcal{3}P$ providers for pages served to Gomez Wired Last-Mile clients.

webpages, 3Ps contribute as much as 50% of the PLT in the median case. As observed earlier, the variation in **3PTR** comes from the variation in load times of 3P assets. Additionally and similarly to Figure 6, in Figure 8 we observe that some 3Ps impact PLTs of some webpages as low as 1%, while other 3Ps impact PLT as much as 50%.

Finally, using the measurement data from HTTP Archive, in Figure 9 we show the 3PTR distribution for the top 16,000 Alexa webpages. For example, we see that for about 50% of the webpages served by CDNs A, B, and C, 3Ps contribute at least 20% of the total PLT, even when webpages are loaded from a cloud datacenter network. For webpages served by CDN D we see that about 65% of the webpages have zero 3PTR, because many webpages served by CDN D are for its own products that do not contain any 3P assets.

5 Selecting Third Party Objects for Optimization

Based on our analysis of 3P impact on PLT in different types of networks, we argue for 1Ps (such as a CDN provider) to rewrite critical 3P URLs and redirect requests onto their infrastructures to reduce 3PTR. Specifically, rewriting critical 3P URLs eliminates DNS lookup time for multiple 3P hostnames, as a rewritten URL can point to the hostname of the basepage that the browser has resolved already. Additionally, URL rewriting allows clients to connect to already warmed-up TCP connections to much closer 1P servers and download 3P content while eliminating TCP slow start and time to setup new TCP connections to distant 3P servers.

Next, when the request to download a 3P resource arrives at the 1P server, the 1P delivers the requested content in one of the following two ways: 1) either from the server's cache; or 2) by retrieving the requested resource from the 3Pserver over a proactively established TCP connection. For example, while the first request for a 3P resource is fetched from 3P servers, subsequent requests for the same resource are served from 1P cache. While it is possible that many clients request a specific resource URL, the response for which needs to be personalized according to the user profile, the 1Ps will need to always fetch the resource from the original 3P server. For such resources, the client requests contain a cookie in the HTTP headers that enables 3P servers to customize responses accordingly.

Rewriting 3P URLs for resources that require a 3P cookie in the request, or in the response, introduces challenges for 1Ps to reliably perform URL rewriting. Specifically, many 3P providers process cookies to perform visitor

Fig. 10: Distributions of cookiebased requests and responses.

counts for each resource, track user activities, generate responses based on user's recent activities, among others. Therefore, when 1Ps proxy 3P traffic on their infrastructure, requests may appear to originate from a smaller pool of 1P server IP addresses – negatively impacting the visitor count and user tracking services for 3P providers. Although, 1Ps could add an x-Forwarded-For header in the forwarded HTTP requests, 3P servers will need to process this header to accurately track users. Finally, if many 3P requests containing user cookies originate from a unreasonably small pool of 1P IP addresses, 3P servers may interpret these requests as a part of a Denial-of-Service (DOS) attack.

In Figure 10, we show the number of 3P objects that require cookies in requests and/or responses for the top 16,000 Alexa webpages. From the figure we observe that for about 50% of the total websites, at least 70% of the 3P objects do not require cookies in requests and responses. Therefore, it is promising for 1Pproviders to speed up webpages by rewriting URLs for those critical 3P resources that do not require cookies neither in HTTP requests, nor in HTTP responses. We argue that for each webpage that a 1P provider serves, the provider could proactively download 3P resources to identify those that do not contain any cookies and thereafter apply URL rewriting to redirect requests for only those 3P resources to its own infrastructure before sending the basepage HTML to the client.

6 Third Party Content Acceleration via URL Rewriting

We clone several webpages on a major CDN provider's infrastructure, where each webpage has two versions: 1) where 3P resources are downloaded from 3P servers, and 2) where URLs of 3P resources are rewritten to download from 1P servers. In Figures 11-16, we show distributions of 200 PLTs for different webpages loaded under different mobile and wired network conditions. Note that the y-axis in these figures is on a log scale. To measure PLTs under different mobile network conditions, we utilize our previous work on simulating cellular networks [24]. For simulating wired network conditions, we only control endto-end (E2E) latency between clients and servers, as in our observations packet loss on wired networks is minimal and bandwidth is not the limiting factor.

In Figures 11 and 12, we select a webpage with 3PTR of about 49% and compare its PLTs in various mobile and wired network conditions respectively. Our results show that rewriting 3P URLs for webpages with such high 3PTR values result in significantly lower PLTs compared to original page. For example, under *Fair* mobile conditions, the median PLT and the 3PTR is reduced by 28%

for a page with TPTR of 25%.

by rewriting URLs of 3P assets on the webpage critical path. Additionally, in a last-mile wired network with E2E latency of 20 ms (typical latency between clients and CDN providers), we observe that the median PLT and the 3PTR with rewritten 3P URLs is 24% lower than original webpages.

Similarly, when comparing PLTs for webpages with 3PTR of 25% and 5%in Figures 13-14 and 15-16 respectively, we observe reduced PLTs by rewriting 3P URLs. However, for these webpages the improvements are less pronounced than we observe in Figures 11 and 12, as the **3PTR** for these webpages is less. For example in Figures 13-14, the median PLTs and 3PTR of a webpage with rewritten 3P URLs under Fair mobile conditions and $20 \,\mathrm{ms} \,\mathrm{E2E}$ wired latency are 15% and 10% lower than original webpage, respectively. Similarly, in Figures 15-16, the median PLTs and the 3PTR under same conditions are 3%and 2.2% lower than for the original webpage.

Note: For CP customers that desire to enable 3P content acceleration for their webpages, rewriting of all 3P objects served over HTTPS should be performed only when the CDN provider makes legal agreements with individual 3P providers to terminate HTTPS connections to their servers and cache the requested content. Additionally, URL rewriting does not introduce any operational complexity to CPs. As CDN providers fetch HTML from their CP customers, CDNs could parse the HTML and apply URL rewriting to 3P objects that lie on the critical path. Further, as CDNs cache 3P objects, these objects can be refreshed similarly to how CDNs refresh objects from their CP customers.

$\mathbf{7}$ Discussion

The improvements in PLTs depend on the value of **3PTR** – higher the value of **3PTR**, the more potential for reducing PLTs exists. While our URL rewriting technique demonstrates improvements in PLTs, we argue that for certain 3Ps,

Fig. 15: PLTs in cellular conditions for a page with TPTR of 5%.

Fig. 16: PLTs in wired conditions for a page with TPTR of 5%.

Fig. 17: Comparing performance metrics of a 3P objects.

Fig. 18: Comparing performance metrics of another *3P* objects.

rewriting URLs may degrade the performance. For example, in Figure 17 we compare performance of a popular 3P resource in terms of DNS lookup time, TCP handshake time, time to receive first bit, download time, and the total load time, when loaded from a major CDN provider network and 3P servers respectively. We observe that DNS lookup time for the 3P resource is significantly lower than the DNS lookup time for the 1P CDN provider, likely because the 1P domain name created for this experiment is not very popular and therefore is not cached by the local DNS resolver. The TCP handshake, first bit, and download time are similar when downloading the same object from 3P or 1P servers. As such, the total load time is governed by the DNS lookup time.

Similarly, in Figure 18, we show the same performance metrics for a different 3P resource. We observe that while DNS lookup time is still higher for a 1P hostname, the TCP handshake, first bit times are significantly lower when downloading the resource from a 1P server, which translates to a lower total load time with rewritten URLs. Therefore, we argue that careful performance analysis should be performed for each critical 3P resource before transmitting HTML with rewritten URLs to clients. For example, if DNS lookup time impacts the overall load time of the object, either the 3P resource need not be rewritten, or the rewritten URL should use a hostname that client should have already resolved, or configure clients to coalesce TCP connections to multiple 3P hostnames. In fact, a recent Internet draft by Microsoft and Mozilla details how to present additional certificates during an existing connection and serve content for the domains referenced in the additional certificates [18].

Next, in Figure 19 we show the impact of URL rewriting when the base page is served over HTTP/2 (h2). This webpage uses many 3P hostnames for which the client establishes several TCP connections. When rewriting such a webpage we rewrite all critical 3P URLs to send requests to the basepage hostname –

Fig. 19: PLTs distributions when rewriting URLs for an h2 page.

Fig. 20: Distributions showing the variation in 3P load times.

reducing the total number of connections from several dozen to just one h2 connection. For such webpages, single TCP connection degrades PLTs as loss interpreted by TCP due to variable radio latency in cellular networks degrades HTTP/2 performance [24]. When measuring PLTs for the same page over h2 in wired networks, we observe that without packet loss, h2 offers faster PLTs. Therefore, we argue that for content delivery optimized for mobile networks, it is important to consider impact on PLT of the number of TCP connections that remain after rewriting URLs.

Finally, for another webpage with over 40 different 3P hostnames and 3PTR of about 30%, we identify that the performance variation from a few 3P resources (for which we could not perform URL rewriting as they contain cookies) negate the benefits of URL rewriting for other 3P resources. As shown in Figure 20, the three 3P resources downloaded from Bing, Turn, and Yahoo servers vary by over 1 second. For example, a resource loaded from Yahoo servers takes anywhere from 300 ms to 1.5 s. Therefore, we argue that for webpages that embed cookie-based 3P objects with high performance variation may not assist the URL rewriting technique to improve PLTs.

Limitation: The one (minor) limitation of 3PTR is that for some webpages, 3PTR may give a lower bound on the impact of 3P downloads on PLT. For example, when a 3P object initiates the download of a 1P object and the 3P downloads in parallel with some other 1P object, the TPTR is calculated as zero. As the 3P object initiates the download of a 1P object, that 3P lies on the webpage critical path, however, 3PTR does not consider object dependencies within a webpage when calculating impact of 3P downloads on PLT. To detect object dependencies, the Referrer header in the HTTP requests can be used to identify the initiator of the request. However, the Resource Timing API does not record the Referrer header and thus we designed 3PTR to utilize the start and end timestamps for each loaded object. Using HTTP Archive data, we identify that less than 2-10% of the webpages possess such dependencies and therefore 3PTR calculates accurate 3P impact for majority of the webpages.

8 Conclusions

Our large scale investigation on 3^{rd} Party performance reveals that 3Ps can impact the overall webpage load time by up to 50%. Through extensive experimentation, we demonstrate that redirecting 3P traffic to 1P infrastructure improves webpage load times. We, therefore, make recommendations to 1P providers

to investigate the existence of 3P resources the critical path of webpages and utilize URL rewriting to improve Web performance for end-users. In the future, we plan to perform even larger scale measurements on production Web traffic.

ACKNOWLEDGMENTS: We thank Ilya Grigorik, Shantharaju Jayanna, Wontaek Na, and Kanika Shah for their help. We also thank National Science Foundation for supporting this work via grants CNS-1555591 and CNS-1527097. **References**

- [1] Gomez Last-Mile Testbed. https://goo.gl/BtwSWY, Nov. 2009.
- [2] HTTP Archive: Interesting stats. http://httparchive.org/, 2010.
- [3] Performance of 3rd Party Content. http://stevesouders.com/p3pc/, Feb. 2010.
- [4] Gomez (Dynatrace Synthetic Monitoring). https://goo.gl/4JTjJy, Jul. 2015.
- [5] Navigation Timing. http://w3c.github.io/navigation-timing/, Aug. 2015.
- [6] The Truth Behind the Effect of Third Party Tags on Web Performance. https: //goo.gl/24f09c, Dec. 2015.
- [7] Alexa Top Sites. http://www.alexa.com/topsites, Jul. 2016.
- [8] Facebook for Developers. https://developers.facebook.com/, Jun. 2016.
- [9] Google Analytics Solutions. https://analytics.googleblog.com/, Jun. 2016.
- [10] Google Fonts. https://fonts.google.com/, Jun. 2016.
- [11] Performance Measurement for the Real World. https://www.soasta.com/ performance-monitoring/, Aug. 2016.
- [12] Resource Timing. https://www.w3.org/TR/resource-timing/, Jul. 2016.
- [13] Third-party content could be slowing Britain's retail websites. https://goo.gl/ 1gi1Li, Mar. 2016.
- [14] WebPageTest Framework. http://www.webpagetest.org/, Jul. 2016.
- [15] K. Alstad. Can third-party scripts take down your entire site? https://goo.gl/ V0iLfa, Jun. 2014.
- [16] M. Belshe, R. Peon, and E. M. Thomson. Hypertext Transfer Protocol Version 2 (HTTP/2), RFC 7540, May 2015.
- [17] B. Bermes. Third Party Footprint: Evaluating the Performance of External Scripts. https://goo.gl/Cqhafq, Sept. 2014.
- [18] M. Bishop and M. Thomson. Secondary Certificate Authentication in HTTP/2. http://www.ietf.org/internet-drafts/draft-bishop-httpbishttp2-additional-certs-01.txt, May 2016.
- [19] F. Chen, R. K. Sitaraman, and M. Torres. End-User Mapping: Next Generation Request Routing for Content Delivery. In ACM SIGCOMM, Aug. 2015.
- [20] R. C. Enaganti. Merge Overlapping Intervals. http://www.geeksforgeeks.org/ merging-intervals/, Aug. 2015.
- [21] U. Goel, M. Steiner, W. Na, M. P. Wittie, M. Flack, and S. Ludin. Are 3rd Parties Slowing Down the Mobile Web? In ACM S3 Workshop, Oct. 2016.
- [22] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin. A Case for Faster Mobile Web in Cellular IPv6 Networks. In ACM MobiCom, Oct. 2016.
- [23] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin. Detecting Cellular Middleboxes using Passive Measurement Techniques. In ACM PAM, Mar. 2016.
- [24] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin. HTTP/2 Performance in Cellular Networks. In ACM MobiCom (Poster), Oct. 2016.
- [25] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai Network: A Platform for High-Performance Internet Applications. In ACM SIGOPS, July 2010.
- [26] J. P. Rula and F. E. Bustamante. Behind the Curtain: Cellular DNS and Content Replica Selection. In ACM IMC, Nov. 2014.
- [27] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall. Demystify Page Load Performance with WProf. In USENIX NSDI, Apr. 2013.