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Abstract—Cloud computing is characterized today by a hotch-
potch of elements and solutions, namely operating systems run-
ning on a single virtualized computing environment, middleware
layers that attempt to combine physical and virtualized resources
from multiple operating systems, and specialized application
engines that leverage a key asset of the cloud service provider (e.g.
Google’s BigTable). Yet, there does not exist a virtual distributed
operating system that ties together these cloud resources into a
unified processing environment that is easy to program, flexible,
scalable, self-managed, and dependable.
In this position paper, we advocate the importance of a virtual
distributed operating system, a Cloud OS, as a catalyst in unlock-
ing the real potential of the Cloud—a computing platform with
seemingly infinite CPU, memory, storage and network resources.
Following established Operating Systems and Distributed Sys-
tems principles laid out by UNIX and subsequent research efforts,
the Cloud OS aims to provide simple programming abstractions
to available cloud resources, strong isolation techniques between
Cloud processes, and strong integration with network resources.
At the same time, our Cloud OS design is tailored to the
challenging environment of the Cloud by emphasizing elasticity,
autonomous decentralized management, and fault tolerance.

I. INTRODUCTION

The computing industry is radically changing the scale of
its operations. While a few years ago typical deployed systems
consisted of individual racks filled with few tens of computers,
today’s massive computing infrastructures are composed of
multiple server farms, each built inside carefully engineered
data centers that may host several tens of thousand CPU cores
in extremely dense and space-efficient layouts [1]. There are
several reasons for this development:

• Significant economies of scale in manufacturing and
purchasing huge amounts of off-the-shelf hardware parts.

• Remarkable savings in power and cooling costs from the
massive pooling of computers in dedicated facilities.

• Hardware advances that have made the use of system
virtualization techniques viable and attractive.

• Commercial interest for a growing set of applications and
services to be offloaded “into the Cloud”.

The commoditization of computing is thus transforming pro-
cessing, storage, and bandwidth into utilities such as electrical
power, water, or telephone access. This process is already
well under way, as today businesses of all sizes tend to
outsource their computing infrastructures, often turning to
external providers to fulfill their entire operational IT needs.
The migration of services and applications into the network is
also modifying how computing is perceived in the mainstream,

turning what was once felt as the result of concrete equipment
and processes into an abstract entity, devoid of any physical
connotation: this is what the expression “Cloud computing” is
currently describing.

Previous research has successfully investigated the viability
of several approaches to managing large-scale pools of hard-
ware, users, processes, and applications. The main concerns
of these efforts were twofold: on one hand, exploring the
technical issues such as the scalability limits of management
techniques; on the other hand, understanding the real-world
and “systemic” concerns such as ease of deployment and
expressiveness of the user and programming interface.

Our main motivation lies in the fact that state-of-the-art
management systems available today do not provide access to
the Cloud in a uniform and coherent way. They either attempt
to expose all the low-level details of the underlying pieces of
hardware [2] or reduce the Cloud to a mere set of API calls—
to instantiate and remotely control resources [3][4][5][6],
to provide facilities such as data storage, CDN/streaming,
and event queues [7][8][9], or to make available distributed
computing library packages [10][11][12]. Yet, a major gap still
has to be bridged in order to bond the Cloud resources into
one unified processing environment that is easy to program,
flexible, scalable, self-managing, and dependable.

In this position paper, we argue for a holistic approach to
Cloud computing that transcends the limits of individual ma-
chines. We aim to provide a uniform abstraction—the Cloud
Operating System—that adheres to well-established operating
systems conventions, namely: (a) providing a simple and yet
expressive set of Cloud metrics that can be understood by
the applications and exploited according to individual policies
and requirements, and (b) exposing a coherent and unified
programming interface that can leverage the available network,
CPU, and storage as the pooled resources of a large-scale
distributed Cloud computer.

In Section II we elaborate our vision of a Cloud operat-
ing system, discuss our working assumptions, and state the
requirements we aim to meet. In Section III we present a
set of elements and features that we see as necessary in
Cloud OS: distributed resource measurement and management
techniques, resource abstraction models, and interfaces, both
to the underlying hardware and to the users/programmers.
We then briefly review the related work in Section IV, and
conclude in Section V with our plans for the future.



II. THE CLOUD: A UNITARY COMPUTING SYSTEM

The way we are accustomed to interact with computers has
shaped over the years our expectations about what computers
can and cannot achieve. The growth in processor power,
the development of new human-machine interfaces, and the
rise of the Internet have progressively turned an instrument
initially meant to perform batch-mode calculations into the
personal gateway for media processing and social networking
we have today, which is an integral aspect of our lifestyle.
The emergence of Clouds is about to further this evolution
with effects that we are not yet able to foresee: as processing
and storage move away from end-user equipment, the way
people interact with smaller and increasingly pervasive pieces
of connected hardware will probably change in exciting and
unexpected ways.

To facilitate this evolution, we argue it is important to
recognize that the established metaphor of the computer as
a self-contained entity is now outdated and needs to be
abandoned. Computer networks have reached such a high
penetration that in most cases all of the programs and data
that are ever accessed on a user machine have in fact been
produced somewhere else and downloaded from somewhere
else. While much more powerful than in the past, the CPU
power and storage capacity of the hardware a user may have
at her disposal pales compared to the power and storage of
the hardware she is able to access over the Internet.

We feel that the times are ready for a new way to understand
and approach the huge amount of distributed, interconnected
resources that are already available on large-scale networks:
the first Cloud computing infrastructures that start to be com-
mercially available provide us with a concrete set of working
assumptions on which to base the design of future computer
systems. Research on distributed management of computer
hardware and applications, together with the emergence of
Internet-wide distributed systems, have provided a wealth of
experiences and technical building blocks toward the goal
of building and maintaining large-scale computer systems.
However, users and developers still lack a definite perception
about the potential of the Clouds, whose size and aggregate
power are so large and hard to grasp: therefore we need to
provide a new set of metaphors that unify and expose Cloud
resources in a simple yet powerful way.

A. Assumptions on Cloud infrastructure

A Cloud is a logical entity composed of managed computing
resources deployed in private facilities and interconnected
over a public network, such as the Internet. Cloud machines
(also called nodes) are comprised of inexpensive, off-the-
shelf consumer-grade hardware. Clouds are comprised of a
large number of clusters (i.e. sets of nodes contained in a
same facility) whose size may range from a few machines to
entire datacenters. Clusters may use sealed enclosures or be
placed into secluded locations that might not be accessible on
a regular basis, a factor that hinders access and maintenance
activities. Clusters are sparsely hosted in a number of locations

across the world, as their deployment is driven by such
practical concerns as:

• Availability of adequate facilities in strategic locations
• High-bandwidth, multi-homed Internet connectivity
• Presence of a reliable supply of cheap electrical power
• Suitable geological and/or metereological properties

(Cold weather, nearby lakes or glaciers for cheap cooling)
• Presence of special legal regimes (data protection, etc.)

The clusters’ computing and networking hardware is said to be
inside the perimeter of the Cloud. The network that connects
the clusters and provides the expected networking services (IP
routing, DNS naming, etc.) lies outside the Cloud perimeter.

The reliance on commodity hardware and the reduced
servicing capability compel us to treat Cloud hardware as
unreliable and prone to malfunction and failures. The network
needs also to be considered unreliable, as a single failure of
a piece of network equipment can impact a potentially large
number of computers at the same time. A typical mode of
network failure introduces partitions in the global connec-
tivity which disrupt the end-to-end behavior of the affected
transport-layer connections. Network issues may arise both
inside the Cloud perimeter, where counter-measures may be
available to address them quickly in a way that is transparent
to most applications, and outside, where it is not possible to
react as timely.

We do not intend to formulate any specific assumption
on the applications that will run on the Cloud computer. In
other words, we expect to satisfy the whole range of current
applicative requirements, e.g. CPU-intensive number crunch-
ing, storage-intensive distributed backup, or network-intensive
bulk data distribution (and combinations thereof). The Cloud
operating system aims to be as general purpose as possible,
providing a simple set of interfaces for the management of
Cloud resources: all the policy decisions pertaining to the use
of the available resources are left to the individual applications.

B. Cloud OS: a familiar OS metaphor for the Cloud

We formulate a new metaphor, the Cloud operating system,
that may be adequate to support the transition from individual
computers as the atomic “computational units” to large-scale,
seamless, distributed computer systems. The Cloud OS aims
to provide a familiar interface for developing and deploying
massively scalable distributed applications on behalf of a
large number of users, exploiting the seemingly infinite CPU,
storage, and bandwidth provided by the Cloud infrastructure.

The features of the Cloud OS aim to be an extension to
those of modern operating systems, such as UNIX and its
successors: in addition to simple programming abstractions
and strong isolation techniques between users and applications,
we emphasize the need to provide a much stronger level
of integration with network resources. In this respect, there
is much to be learnt from the successor of UNIX, Plan 9
from Bell Labs [13], which extended the consistency of the
“everything is a file” metaphor to a number of inconsistent
aspects of the UNIX environment. More useful lessons on
techniques of process distribution and remote execution can



be drawn from earlier distributed operating systems such as
Amoeba [14].

While a traditional OS is a piece of software that manages
the hardware devices present in a computer, the Cloud OS is a
set of distributed processes whose purpose is the management
of Cloud resources. Analogies to established concepts can
therefore help us to describe the kind of features and interfaces
we wish to have in a Cloud OS, ignoring for the moment the
obvious differences of scale and implementation between the
two scenarios:

• an OS is a collection of routines (scheduler, virtual
memory allocator, file system code, interrupt handlers,
etc.) that regulate the access by software to CPU, mem-
ory, disk, and other hardware peripherals; the Cloud OS
provides an additional set of functionalities that give
administrative access to resources in the Cloud: allocate
and deallocate virtual machines, dispatch and migrate
processes, setup inter-process communication, etc.

• an OS provides a standard library of system calls which
programs can use to interact with the underlying hard-
ware; the Cloud OS provides a set of network-based inter-
faces that applications can use to query the management
system and control Cloud resources.

• an OS includes a standard distribution of libraries and
software packages; the Cloud OS includes software sup-
port for the autonomous scaling and opportunistic deploy-
ment of distributed applications.

C. Toward seamless access to networked resources

The Cloud OS interface implements, as a straightforward
extension of a traditional OS interface, those additional func-
tions and abstractions that will facilitate the access to remote
resources. Instances of software running on the Cloud are
expected to communicate over a variety of scopes (same node,
same cluster, between nodes in remote clusters) using network
links whose behavior and properties can be very diverse. A
major challenge of the Cloud environment is thus characteriz-
ing the network infrastructure in a much more expressive way
compared to existing distributed operating systems: in order to
support applications that are sensitive to inter-node latencies
or that require heavy network activity, the cost1 (in terms of
link latency, expected transmission delay, delay required to
initialize a new virtual machine, etc.) of accessing a Cloud
resource needs to be advertised.

Our work participates in the current attempts at rethinking
the relationship between processing and networking at any
scale—ranging from individual multi-processor systems [15]
to datacenters [16]—in order to encompass large-scale Cloud
architectures. Baumann et al. [15] observe that current multi-
core processors are actually networked systems, and instead of
building a traditional kernel for such processors with processor
cores competing for shared locks, they adopt a message-based,
distributed approach that ultimately reaches a higher efficiency.

1In commercial Cloud deployments, cost may also include the actual pricing
of the resources consumed by the applications.

Costa et al. [16] argue for a higher degree of integration
between services and networks in the datacenter by exposing
detailed knowledge about network topology and performance
of individual links, which allows the adoption of automated
network management techniques such as application-aware
multi-hop routing or efficient local-scope multicast.

The main purpose of our Cloud OS is the introduction of a
new set of abstractions to represent the previously hidden cost
required to access networked Cloud resources in a synthetic
and sufficiently accurate way. It is our primary concern to
provide to users and developers alike with a consistent view
over the Cloud resources so as to encourage them to write new
forms of distributed applications. Developers in particular typ-
ically expect to focus primarily on the functional requirements
of the applications, rather than on the complicated trade-offs of
distributed programming. The Cloud OS therefore will provide
a library of standard functionalities, such as naming, consistent
replication and elastic application deployment that attempt to
cover the common requirements of distributed applications.

D. Cloud OS requirements

Whereas current datacenter setups can offer a fine-grained
amount of control and pervasive management capabilities, the
Cloud environment is much less predictable and harder to
control: the environment imposes therefore several restrictions
to the Cloud OS design, such as the reliance on coarse-grained
knowledge about Cloud resource availability, the need to detect
and tolerate failures and partitions, and a lack of global view
over the system state. Despite these limitations, our design
aims to meet the following general requirements:

a) The Cloud OS must permit autonomous management
of its resources on behalf of its users and applications: Our
main purpose is providing an abstraction of the Cloud as a
coherent system beyond the individual pieces of hardware
from which it is built. The Cloud OS should therefore expose
a consistent and unified interface that conceals whenever
possible the fact that individual nodes are involved in its
operations, and what those low-level operations are.

b) Cloud OS operation must continue despite loss of
nodes, entire clusters, and network partitioning: Conforming
to our assumptions, we expect that every system component,
including networks, may unexpectedly fail, either temporar-
ily or permanently. Guaranteeing continued operation of the
Cloud management processes in these conditions involves
mechanisms for quickly detecting the failures and enacting
appropriate measures. Note that fault-tolerance at the Cloud
level does not imply any guarantee about the fault-tolerance of
individual applications: the state of any process could suddenly
disappear because of any of the previous events, therefore
Cloud applications should be designed with this in mind.
Several Cloud libraries that implement common fault-tolerance
and state recovery features are provided out of the box.

c) The Cloud OS must be operating system and architec-
ture agnostic: The network is the common interface boundary
between the various software elements of the Cloud. The
reason for this choice is that we want to enable the broadest



compatibility between hardware and software configurations,
while providing at the same time an easy way for future
evolution of the Cloud system, both at a global and at an
individual subsystem level. Experience shows that protocols
are able to withstand time much better than ABIs, standard
library specifications, and file formats: long-lived protocols
such as the X protocol and HTTP are good examples in
this regard. While it is wise from an operational standpoint
to consolidate the number of architectures supported and
standardize around a small number of software platforms, the
Cloud OS operation does not depend on any closed set of
platforms and architectures.

d) The Cloud must support multiple types of applications,
including legacy: In the assumptions above, we purposefully
did not specify a target set of applications that the Cloud is
supposed to host. Rather than optimizing the system for a
specific mode of operation (e.g. high performance computing,
high data availability, high network throughput, etc.), we aim
to address the much broader requirements of a general-purpose
scenario: applications of every type should ideally coexist
and obtain from the system the resources that best match the
application requirements.

e) The Cloud OS management system must be decentral-
ized, scalable, have little overhead per user and per machine,
and be cost effective: The use of such a soft-state approach
takes inspiration from recent peer-to-peer techniques: these
systems are capable of withstanding failures and churn at
the price of a reasonable amount of network overhead, and
provide enough scalability to meet and surpass the magnitudes
of today’s datacenters and large-scale testbeds. Moreover, apart
from initial resource deployment and key distribution, no
human intervention should be required to expand the Cloud
resources. Likewise, user management should only entail
the on-demand creation of user credentials, which are then
automatically propagated throughout the Cloud.

f) The resources used in the Cloud architecture must
be accountable, e.g. for billing and debugging purposes:
The cost of an application’s deployment across the Cloud is
also a part of the end-to-end metrics that may influence the
scheduling of resources as per an application’s own policy.
Moreover, dynamic billing schemes based e.g. on resource
congestion [17] could be an effective way to locally encourage
a proportionally fair behavior among users of the system and
increase the cost of attacks based on maliciously targeted
resource allocation [18].

III. TOWARD A CLOUD OPERATING SYSTEM

In this section, we present the architecture and functional
building blocks of the Cloud OS. Our current design ap-
proach leverages decades of experience in building networked
systems, from the origins of the Internet architecture [19]
to subsequent achievements in distributed operating systems
research [13] and large-scale network testbed administra-
tion [20]. An additional inspiration, especially concerning the
implementation of Cloud OS, comes from the last decade of
advances in distributed algorithms and peer-to-peer systems.

A. Logical architecture of the Cloud OS

Figure 1 represents a logical model of Cloud OS. We define
the Cloud object as a set of local OS processes running on an
single node, which are wrapped together and assigned locally
a random identifier of suitable length to minimize the risk
of system-wide ID collisions. A Cloud process (CP) is a
collection of Cloud objects that implement the same (usually
distributed) application.

We refer to the small number of CPs that regulate physical
allocation, access control, accounting, and measurements of
resources as the Cloud kernel space. Those CPs that do not
belong to kernel space pertain to the Cloud user space. User
space CPs that are executed directly by users are called User
Applications, while Cloud Libraries are CPs typically called
upon by Applications and other Libraries. Applications can in-
terface with Libraries and kernel CPs over the network through
a set of standard interfaces called Cloud System Calls2. The
assumptions stated above pose very few constraints about the
features that the underlying Cloud hardware is expected to
provide. Basically, the ability to execute the Cloud kernel
processes, together with the availability of appropriate trust
credentials, is a sufficient condition for a node to be part
of the Cloud3. A limited access to Cloud abstractions and
interfaces is thus also achievable from machines that belong to
administrative domains other than that of the Cloud provider,
with possible restrictions due to the extent of the management
rights available there.

All objects in the Cloud user space expose a Cloud system
call handler to catch signals from the Cloud OS, i.e. they
can be accessed via a network-based interface for manage-
ment purposes. The association between object names and
their network address and port is maintained by the process
management and virtual machine management kernel CPs,
and the resulting information is made available throughout
the Cloud via the naming Library. The naming library also
keeps track of the link between User Application CPs and
the objects they are composed of. The access rights necessary
for all management operations are granted and verified by
the authentication kernel CP. Measurement kernel CPs are
always active in the Cloud and operate in both on-demand and
background modes.

B. Implementation of the Cloud kernel processes

1) Resource measurement: The Cloud OS needs to main-
tain an approximate view of the available Cloud resources. Our
current approach involves performing local measurements on
each Cloud node. This technique provides easy access to end-
to-end variables such as latency, bandwidth, packet loss rate,
etc., which are precious sources of knowledge that are directly
exploitable by the applications. More detailed knowledge

2The network protocols used among objects that belong to a same CP are
outside the scope of the Cloud OS interface definition.

3Nodes that are not part of the Cloud are still capable to access Cloud
resources using the network-based system call interface; however, without
a full OS-level support for Cloud abstractions, they won’t provide seamless
integration between the local and the Cloud environment.



Figure 1. Logical model of Cloud OS, featuring the division between Cloud kernel / Cloud user space and the system call and library API interfaces.

requires complete control over the network infrastructure, but
it may be used in certain cases to augment the accuracy of
end-to-end measurements (e.g., with short-term predictions of
CPU load or networking performance [21]) in Clouds that span
several datacenters.

Measurements can target either local quantities, i.e. inside
a single Cloud node, or pairwise quantities, i.e. involving
pairs of connected machines (e.g. link bandwidth, latency,
etc.). Complete measurements of pairwise quantities cannot be
performed in large-scale systems, as the number of measure-
ment operations required grows quadratically with the size of
the Cloud. Several distributed algorithms to predict latencies
without global measurement campaigns have been proposed:
Vivaldi [22] collects local latency samples and represents
nodes as points in a coordinate system. Meridian [23] uses
an overlay network to recursively select machines that are
the closest to a given network host. Bandwidth estimation
in Cloud environments remains an open problem: despite the
existence of a number of established techniques [24], most of
them are too intrusive and unsuitable for simultaneous use and
to perform repeated measurements on high capacity links.

2) Resource abstraction: Modern OS metaphors, such as
the “everything is a file” model used by UNIX and Plan9, pro-
vide transparent network interfaces and completely hide their
properties and specificities from the applications. However,
characterizing the underlying network is a crucial exigence for
a Cloud OS, for network properties such as pairwise latencies,
available bandwidth, etc., determine the ability of distributed
applications to efficiently exploit the available resources. One
major strength of a file-based interface is that it is very flexible
and its shortcomings can be supplemented with an appropriate
use of naming conventions. We are considering several such
mechanisms to present abstracted resource information from
measurements to the applications, e.g. via appropriate exten-
sions of the /proc interface or via POSIX-compatible semantic
cues [25].

In order to present information about resources to the user

applications, the Cloud OS needs first to collect and aggregate
them it in a timely way. Clearly, solutions based on centralized
databases are not viable, since they lack the fault-tolerance
and the scalability we require. The use of distributed systems,
such as distributed hash tables (DHTs), has proved to be
very effective for publishing and retrieving information in
large-scale systems [26], even in presence of considerable
levels of churn [27]. However, DHTs offer hash table (key,
value) semantic, which are not expressive enough to support
more complex queries such as those used while searching for
resources. Multi-dimensional DHTs [28][29] and gossip-based
approaches [30] extended the base (key, value) semantic in
order to allow multi-criteria and range queries.

3) Distributed process and application management: The
Cloud OS instantiates and manages all objects that exist
across the Cloud nodes. A consolidated practice is the use
of virtual machines (VMs), which provide an abstraction that
flexibly decouples the “logical” computing resources from
the underlying physical Cloud nodes. Virtualization provides
several properties required in a Cloud environment [31], such
as the support for multiple OS platforms on the same node and
the implicit isolation (up to a certain extent) between processes
running on different VMs on the same hardware. Computation
elasticity, load balancing, and other optimization requirements
introduce the need for dynamic allocation of resources such as
the ability to relocate a running process between two nodes in
the Cloud. This can be done either at the Cloud process level,
i.e. migrating single processes between nodes, or at virtual
machine level, i.e checkpointing and restoring the whole VM
state on a different node. The combination of process and
VM migration, such as it was introduced by MOSIX [32],
is very interesting as a Cloud functionality as it allows to
autonomously regroup and migrate bundles of related Cloud
objects with a single logical operation4.

4Another compelling approach is Libra [33], which aims to bridge the
distance between processes and VMs: the “guest” operating system is reduced
to a thin layer on top of the hypervisor that accesses the functions exposed
by the “host” operating system through a file-system interface.



The Cloud operating system must also provide an interface
to manage processes from a user perspective. This requires
the introduction of an abstraction to aggregate all the different
computational resources is a single view. A good example
on how to do this is the recent Unified Execution Model
(UEM) proposal [34], which structures the interface as a
directory tree similar to the Plan 9 /proc file system and
provides an intuitive way to create, copy, and move processes
between Cloud nodes. The novelty of the UEM approach is
the possibility to “switch the view” on the Cloud process
namespace, using a simple extension of common shell built-in
commands, inducing a transition e.g. from a per-node view of
the process environment to an application-based list of running
Cloud processes and objects.

4) Access control and user authentication: Providing seam-
less support for large numbers of simultaneous users requires
a distributed authentication method to avoid single points of
failure, resulting in the complete or partial inaccessibility to
Cloud resources. Plan 9 provides a very interesting distributed
security model [35] which is based on a factotum server,
running on every machine, that authenticates the users pro-
viding a single-sign-on facility based on secure capabilities.
Authentication of users by factotum needs to be supported by
a Cloud-wide system for securely distributing and storing user
credentials, which could be seen as a scaled-up, distributed
version of the Plan 9 secstore service.

C. Features provided by the Cloud user space

In order to fully exploit the potential of a general purpose
Cloud OS, developers should be given access to a set of
standard ways to satisfy common requirements of distributed
large-scale applications. Cloud libraries provide a standard
API with features such as:

• access to Cloud-wide object and process naming via DNS
and/or other distributed naming services [36],

• distributed reliable storage functionality [25][37],
• automated Cloud application deployment, horizontal scal-

ing, and lifecycle management [38],
• high availability failover support with checkpointed repli-

cated process execution.
As a general principle, the Cloud libraries provided by the
Cloud OS should allow the developers to control the required
level of data replication, consistency, and availability, and
also the way failure handling is performed when application
requirements are not satisfied. This way, an application devel-
oper can concentrate her attention on the specific properties
of the application, knowing that the system will try its best to
accommodate the stated requirements. For instance, when an
application demands high availability and is capable of deal-
ing with temporary inconsistencies, the library may provide
eventual consistency support, instead of stronger consistency.

The advantages of this configurability are twofold. On one
hand, an application developer doesn’t need to implement
her own customized (application-specific) libraries, but instead
can customize the level of support she needs from the Cloud
library API. This reduces the complexity and error proneness

of application development. On the other hand, the approach
above promotes re-usability of Cloud application components,
which can be easily adapted to satisfy different specifications
just by updating a minor amount of embedded Cloud library
parameters.

IV. RELATED WORK

Our work draws from a number of different fields and
research topics: distributed operating systems, remote applica-
tion management, and large-scale peer-to-peer systems. With
Cloud OS, we aim to achieve an original synthesis of the three:
we propose an architecture-agnostic functional platform to
support the efficient implementation and seamless deployment
of new distributed applications.

A. Grid and Cloud middleware

Over the past few years, the adoption of cloud computing
in enterprise development has been technologically supported
by a very heterogeneous set of cloud services. IBM Research
Center recently stated that the heterogeneous nature of this
solution space hinders the adoption of Cloud technologies
by major enterprises [39]. In [40], the authors argue that a
“Cloud middleware” should solve this by homogenizing the
cloud interface. To justify this observation, IBM developed
the Altocumulus middleware, which offers a uniform API for
using Amazon EC2, Eucalyptus, Google AppEngine, and IBM
HiPODS Cloud, aiming to provide an API which is Cloud
agnostic (i.e., the integration of new public clouds requires the
development of specific adaptors). Although our work aims
to offer a homogeneous cloud interface as well, our work
adopts a bottom-up instead of a top-down approach: instead of
providing means to move existing solutions under one single
Cloud umbrella, we seek to offer a Cloud OS that is able to
seamlessly control private and public cloud resources.

The Globus toolkit [3] is a set of libraries and services that
address security, information discovery, resource management,
data management, communication, fault-detection and porta-
bility in a Grid environment. The lack of consistent interfaces
make the toolkit difficult to install, manage, and use. While the
generalization done by Globus is essentially at the application
level (indeed services virtualize components that live in the
application level), we try to operate at a lower level, trying to
provide the user with an operating system abstraction. In our
approach, what is provided to users are raw resources (CPU,
network bandwidth, storage) and an interface to operate on
processes, instead of higher-level services.

Other Cloud middleware initiatives like SmartFrog [38]
have focused on managing the usage of private and public
cloud computing infrastructure. Similar to our Cloud OS,
SmartFrog supports transparent deployment of client services
and applications on the available resources, allows for on-
demand scaling, and provides failure recovery features. Note,
however, that the SmartFrog middleware assumes Cloud appli-
cations are written in Java. Our Cloud OS, in contrast, provides
a language and technology agnostic API including a set of



network protocols. This way, the usability of our Cloud OS
will not be restricted by technology lock-in.

Among the related literature, the goals of XtreemOS [41]
are the closest to ours. It aims at the design and implementa-
tion of an open source Grid operating system which would be
capable of running on a wide range of underlying platforms,
spanning from clusters to mobiles. It implements a set of
system services that extend those found in a typical Linux
system. This is different from our approach, which focuses on
network protocols and has no specific requirements concerning
architecture or operating system running on a node. XtreemOS
aims to be completely transparent to the applications, whereas
we want to provide additional information and hooks to the
application developers.

B. Global resource management

Early systems for monitoring and managing resources, such
as Remos [42] and Darwin [43] used a centralized architecture
that suffered from clear scalability and reliability problems.
Later, Astrolabe [44] adopted a distributed approach focused
on scalability: Astrolabe creates a hierarchy of zones and
inside each of them the availability of resources is advertised
via a gossiping protocol. At each level of the hierarchy, the
state of the resources gets incrementally aggregated. This
approach hinders the efficient compilation of the list of nodes
that match a given job requirement. Like Astrolabe, [30]
also relies on gossiping to locate appropriate nodes, but
doesn’t use a hierarchical infrastructure: gossip messages are
routed via subsequent hops across a multidimensional space
to reach nodes that satisfy all the specified constraints. The
SWORD [45] resource discovery service builds upon a DHT,
a structured overlay [46]. SWORD generates a different key
for each attribute based on its current value. Range queries
are efficient in SWORD, since each node is responsible for a
continuous range of values [29].

C. Remote application management

The first attempts to manage the computing resources of a
large number of remote machines were SETI@Home [47] in
the mid-nineties, followed by its successor BOINC [48] and
many other similar projects. The immense computing resource
that could be harnessed via a simple, centralized mechanism
first tangibly illustrated the power of large-scale distributed
batch computing.

Distributed application management framework soon aban-
doned the initial centralized architecture, leveraging tech-
niques from peer-to-peer search and file-sharing networks:
these systems need in fact to integrate resource discovery,
application monitoring, and remote management [49][50]. The
first generation of resource management systems was based on
early peer-to-peer architectures. Zorilla [51] is very similar to
Gnutella, thus suffering from the same scalability issues [52].
Job advertisements are flooded to other nodes in the system.
Upon reception of an advertisement, the node checks if all
the requirements of that job are met at the current time, and
acknowledges or ignores the advertisement. In case of a node

failure, Zorilla will find a new node and notify the application,
leaving to the application the implementation of mechanisms
for failure recovery.

Plush [53] makes use of SWORD to provide an application
management infrastructure service. It consists of tools for
automatic deployment and monitoring of applications on large-
scale testbeds such as PlanetLab. To do so it uses a set of
application controllers that run on each node, whereas, the
execution of the distributed application is controlled by a
centralized manager. While one requirement of our Cloud OS
is to be scalable, Plush has been able to manage only up
to 1000 nodes in emulations and 500 nodes in a real-world
deployment.

V. FUTURE DIRECTIONS

The existence of simple yet powerful and expressive ab-
stractions is essential in realizing the full potential of Cloud
Computing. To this purpose we introduced the Cloud operating
system, Cloud OS. Cloud OS aims to provide an expressive set
of resource management options and metrics to applications
to facilitate programming in the Cloud, while at the same
time exposing a coherent and unified programming interface
to the underlying distributed hardware. This unified interface
will provide developers with a quick and transparent access to
a massively scalable computing and networking environment,
allowing the implementation of robust, elastic, and efficient
distributed applications. Our next steps beyond laying out the
architecture of CloudOS include, first, a detailed definition of
functional elements and interfaces of the kernel-space Cloud
processes and of the user-space libraries, and second, the
design and implementation of the aforementioned elements
with emphasis on fault-tolerance, security, and elasticity.
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