
Shortcuts in a Virtual World

Moritz Steiner∗ and Ernst W. Biersack
Institut Eurécom

06904 Sophia–Antipolis
France

{steiner,erbi}@eurecom.fr

ABSTRACT
We consider the case of a virtual world of peers that are or-
ganized in an overlay built by Delaunay Triangulation. Ap-
plication layer routing is used to determine the path taken
in the overlay between two peers. Application layer routing
incurs a major delay penalty since it ignores the character-
istics of the physical network topology.

We show how to augment a Delaunay based overlay by a
small and bounded number of additional links called short-
cuts. A peer chooses its shortcuts among the nodes that are
physically close to him in the underlay while covering at the
same time uniformly the overlay space. Shortcuts improve
the average hopcount and the average delay for a path be-
tween two peers from O(N1/d) to O(log(N)), where N is
the total number of peers in the overlay and d the dimen-
sion of the overlay. The algorithm to manage shortcuts is
fully distributed and requires only local knowledge.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network topology, Distributed net-
works

General Terms
Algorithms, Performance

Keywords
P2P, overlay, small world, routing

1. INTRODUCTION
Networked Virtual Environments (NVEs) are computer

generated synthetic worlds that allow simultaneous inter-
actions between multiple participants. Especially with the
boom of Massive Multiplayer Online Games (MMOGs), NVEs

∗Moritz Steiner is also affiliated with the Department
of Mathematics and Computer Science, University of
Mannheim, Germany.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2006 ACM 1-59593-456-1/06/0012 ...$5.00.

are becoming increasingly popular. To create a large scale
NVE, the traditional client-server model does not scale and
a peer-to-peer based approach is required that constructs an
overlay connecting all the participants.

NVEs have several requirements that influence the choice
of the overlay

• Peers must be able to freely choose their peerId, which
in fact reflects their position in the overlay

• Peers move around and their position and peerId will
change

• The overlay must efficiently support the communica-
tion of a peer with its close-by neighbors.

There exist a large number of structured overlays such as
Pastry [16], Tapestry [23], Chord [19], CAN [15]. However,
these overlays typically assign to each peer a fixed peerId,
for instance the hash of the peer’s IP address, which is not
appropriate for NVEs.

Delaunay triangulation [5], on the other hand, meets all
these requirements. Structured overlays based on Delaunay
triangulation have been studied previously [11, 18]. A De-
launay based overlay organizes peers according to their posi-
tion in the NVE. However, as do most overlays – a Delaunay
based overlay completely ignores the position of the peers
in the physical network. As consequence, two peers that
are neighbors in the overlay may be physically far away and
any message exchange along a sequence of overlay hops will
experience a significant delay penalty.

To reduce the delay penalty of overlay routing, we propose
to augment each node of the Delaunay based overlay with a
limited number of carefully selected shortcut links.

The rest of this paper is organized as follows: Section 2
introduces definitions necessary for the description of our
algorithm and section 3 discusses the related work. Section
4 presents the algorithms for shortcut selection and shortcut
routing, called Shortcut Augmented Overlay (SAO). In Sec-
tion 5 we evaluate SAO and present some simulation results.
Finally, Section 6 concludes the paper.

2. DEFINITIONS

2.1 Terminology
An overlay network is a network that is built on top of

another network, called the underlay or the physical net-
work. Let N denote the set of all nodes in the underlay
and O, O ⊂ N the set of nodes in the overlay. The un-
derlay consists of a set of nodes N (routers and end hosts)
connected by physical links. The overlay consists of a set of
nodes O (end hosts only) connected by virtual links.

A peer p, p ∈ O, has two types of coordinates: (i) overlay
coordinates po that indicate the position of p in the NVE
and (ii) network coordinates pu that reflect the position
of the peer in the underlay. The network coordinates can
be calculated at very low cost using a network coordinate
system such as Vivaldi [4]. Network coordinates are used to
compute the underlay distance between two peers.

Given two peers p and k, do(p, k) denotes the overlay dis-
tance between p and k, which is defined as the Euclidean
distance between the virtual coordinates po and ko. Sim-
ilarly, du(p, k) denotes the underlay distance between p

and k, which is defined as the Euclidean distance between
the network coordinates pu and ku. Overlay distance is a
measure of the routing overhead since at each overlay hop
some processing must be done, whereas underlay distance
is a measure of the delay a message will experience before
reaching the destination. If underlay distance between two
nodes p and k is less than a threshold dt, i.e. du(p, k) < dt,
p and k are considered to be very close to each other in the
underlay and are called physical neighbors.

We have now all the necessary notation to explain delay
penalty more concisely: Consider two peers p and k. Let
p = h0, . . . , hi = k be the overlay peers visited by a message
sent from peer p to peer k. The path of overlay hops visited
may be much longer than the distance separating the two
peers in the underlay, a case which we refer to as delay
penalty:

i−1
X

j=0

d
u(hj , hj+1) >> d

u(p, k).

2.2 Delaunay triangulation
Since the goal of a NVE is to create a virtual world that

is as realistic as possible, a 3-dimensional representation of
the NVE is required.

Given n 3-dimensional points that represent to positions
of our peers in the NVE, a 3-dimensional Delaunay tri-
angulation (DT) connects the points into non-overlapping
tetrahedra that fill the convex hull of these points. If all
point pairs whose region share a common plane are joined by
straight lines, the result is a triangulation of the convex hull
of the n points. This triangulation is known as Delaunay
triangulation1. See figure 1 for a Delaunay triangulation in
2 dimensions.

1The dual of the Delaunay triangulation is the Voronoi Di-
agram [22], which assigns to each of the n points a region
that is nearer to that point than to any other point.

The points represent the peers in the NVE and the edges
the links between peers. The nodes in the overlay that are
connected with peer p via a virtual link are referred to as
overlay neighbors of peer p, denoted as V (p), V (p) ⊂ O.

Figure 1: Delaunay Triangulation (solid lines) and
Voronoi diagram (dashed lines) in 2 d.

Overlay routing is done in a greedy fashion: The mes-
sage is forwarded to the overlay neighbor that reduces the
remaining overlay distance to the destination most among
all neighbors. In Delaunay based overlays, greedy routing

requires O(No) time in the worst case and O(N
1/d
o) in the

average case, where No denotes the number of the nodes in
the overlay, and d the dimension of the overlay.

To improve the performance of overlay routing, additional
overlay links, called shortcut links are introduced. The over-
lay nodes to which a peer p has a a shortcut link with
peer p are called shortcuts of peer p, and denoted as S(p),
S(p) ⊂ O.

3. RELATED WORK
When structured overlays where first introduced, very lit-

tle attention was payed to exploit information about the
underlay-proximity of nodes for overlay routing. As a conse-
quence, a message sent to a destination using overlay routing
will incur a high delay penalty. To reduce the delay penalty,
various proposal were made. In CAN [15], each node mea-
sures its underlay distance to a set of landmark nodes, in an
effort to determine its relative position in the Internet and to
construct an Internet topology aware overlay. Tapestry and
Pastry use prefix-based routing, which leaves considerable
freedom in the choice of the overlay neighbors.

Pastry can be enhanced by a proximity neighbor selec-
tion [3] where a node p selects among all the possible nodes
with the appropriate prefix the node with the smallest un-
derlay distance from node p. The shorter the prefix to
be matched, the more candidate nodes with the appropri-
ate prefix exist and the smaller the underlay distance be-
tween the closest node and p. If proximity neighbor selec-
tion is applied, the overlay path pi, pi+1, · · · , pi+h−1, pi+h

taken by a the message will be such that for any two consec-
utive overlay hops, the overlay distance will decrease, i.e.
do(pl, pl+1) > do(pl+1, pl+2), while the underlay distance
will increase, i.e. du(pl, pl+1) < du(pl+1, pl+2). In practice

the underlay distance du(pi+h−1, pi+h) of the last hop will
dominate the total distance traveled by that message .

There exists another class of overlays that try to exploit
the characteristics of small world graphs to improve search
efficiency. The notion of small world phenomenon originates
from social science research [14, 20, 21] and has found a lot
of interest in the physics, computer science, and mathemat-
ics community. Observations indicate that the small world
phenomenon is pervasive in a wide range of settings such as
social communities, biological environments, and communi-
cation networks.

Informally, a small world network can be viewed as a con-
nected graph in which two randomly chosen nodes are con-
nected by a short path through the graph with large proba-
bility. The term small world effect means that the average
distance between two nodes in the network increases loga-
rithmically with the total number of nodes in the network.

Kleinberg [8] presented an algorithm to build a small world
graph that augments a graph consisting of a grid by a con-
stant number of additional long range links. However, to
create the additional links, global knowledge is required.
For message forwarding, a greedy routing procedure is used
where each node forwards the message to the neighbor that
is the closest to the destination.

Approaches based on the small world phenomenon [7, 10,
13, 12] have a number of limitations. They do not take
into account the physical network topology and they do not
allow the peers in the NVE to freely choose and change their
position.

In summary, we have seen two different approaches to
improve overlay routing: One approach is to better match
the overlay and the underlay in order to reduce the delay
penalty and another one is to construct a small-world overlay
to keep the number of overlay hops traveled small. However,
up to now these two approaches have not been explored
together as will be done in in this paper with SAO.

4. ALGORITHMS FOR A SHORTCUT AUG-
MENTED OVERLAY

SAO aims to improve overlay routing of messages by in-
troducing shortcut links. More precisely

• SAO reduces the number of hops in the overlay by
augmenting the overlay with additional links in such
a way that the overlay resembles a small world: Each
peer p has a limited number of shortcuts S(p) that
“cover the whole virtual world”. These shortcuts S(p)
are organized into concentric, non-overlapping rings
that are divided into 2d quadrants (Figure 2) with peer
p is at the center. For a given number of rings R, the
maximum number of shortcuts is 2d ∗R, where d is the
dimension of the overlay.

• SAO reduces drastically the delay penalty since short-
cuts are chosen among the physical neighbors.

4.1 Shortcut Insertion
Our aim is to make shortcut insertion as lightweight as

possible. For this purpose SAO uses a lazy algorithm to
insert new shortcuts: A peer continuously learns about the
existence of other peers, (i) during the join procedure, (ii)
while traveling the virtual world, (iii) or simply when for-
warding a message.

Figure 2: Structure (for 2 dimensions) used to or-
ganize the shortcuts. The dark point in the center
represents peer p, the grey points are the shortcuts
S(p) of peer p. Note that not all the possible fields
are used.

Whenever a node k qualifies as shortcut (algorithm 1: line
1) the corresponding field — defined by the number of the
ring r and the number of the quadrant q — is computed, and
k is added to the list of shortcuts (lines 2-3). Any shortcut
previously stored at that field will be overwritten. In doing
so, we will constantly “renew” the shortcuts. This reduces
the probability of stale shortcuts without having to check
periodically if they are alive.

Whenever k is a shortcut for p, p is also a shortcut for k.
Therefore, p informs k to add p to its shortcuts (line 4).

Algorithm 1: addShortcut(k) (executed by peer p to
add peer k to S(p).)

if du(p, k) < dt then1

r, q ← getRelativePosition(k)2

S(p) ← k, [r, q]3

k.addShortcut(p)4

When a node p joins the overlay first, its set of shortcuts
will be empty. In this case p may simply ask some of the
nodes it has encountered during the join for their shortcuts.
This means that the peers are learning from each other and
find shortcuts while communicating.

We have seen that local knowledge only is sufficient to
find the shortcuts. This and the fact that shortcuts are
physical neighbors is the major difference between SAO and
the algorithm of Kleinberg.

4.2 Shortcut Routing
In SAO, a node p has two types of neighbors: overlay

neighbors V (p) and shortcuts S(p). The nodes in V (p) are
close to p in the overlay, whereas the nodes in S(p) are close
to p in the underlay.

The idea is to use shortcuts whenever possible and to rely
on overlay neighbors only when no shortcuts are available.

Consider a message to be sent to destination d. When
the routing procedure computes the next hop, it first tries
to find a shortcut s ∈ S(p) that minimizes the remaining

distance in the overlay do(s, d) while incurring as little delay
in the underlay as possible. For this purpose, the ring r and
the quadrant q of d are calculated (Algorithm 2, line 1).
In case the field is empty, the fields in the same quadrant
of interior rings (i.e. rings closer to the center) are checked
(line 3-5). While shortcuts stored in interior rings r−1, . . . , 1
will not reduce the remaining overlay distance as much as a
shortcut in ring r, they will reduce the remaining distance
more than any overlay neighbor V (p). If no appropriate
shortcut is found, the overlay neighbor in V (p) closest to
the destination d is selected as next hop (line 6-10).

Using this kind of routing, a message will first use short-
cut and travel long overlay distances but short underlay
distances and as it approaches the destination it will use
overlay neighbors and travel only small overlay distances
but large underlay distances. Remember, the same behav-
ior was achieved in Pastry when using proximity neighbor
selection (see Section 3).

Algorithm 2: findShortcut(d) (executed by peer p

searching a route to destination d.)

r, q ← getRelativePosition(d)1

closest ← null2

while closest = null and r > 1 do3

closest ← S(p)[r, q]4

r ← r − 15

if closest = null then6

closest ← p7

foreach n ∈ V (p) do8

if do(n, d) < do(closest, d) then9

closest ← n10

return closest11

5. SIMULATIONS
We carry out simulations to evaluate the performance im-

provement due to shortcuts. We show that a small number
of shortcuts is sufficient to significantly decrease the num-
ber of hops and the delay of the path taken: The expected
number of overlay hops and the expected delay2 of a path

are no longer O(N
1/d
o) but can be reduced to O(log(No)).

5.1 Simulation Setup
The overlay and the underlay needs to be simulated to-

gether. We will first explain how to create the underlay
and the overlay and then how to assign overlay nodes to the
underlay.

Underlay: GT-ITM
Gt-itm [2, 1] is a widely-used tool to create synthetic net-
work topologies. We used it to generate a 2–tier topology
that consists of interconnected domains, and nodes inside
each domain (Figure 3). Gt-itm provides us with two di-
mensional coordinates for each node and the links between
them. The coordinates are used as network coordinates in-
dicating the position of a node (in the underlay).

End users that may participate in the overlay usually have
one link only. Therefore a big fraction of nodes must have
only one link.
2In the following we will use the terms distance and delay
interchangeably.

Figure 3: Network topology with 8000 nodes orga-
nized in 2–tiers generated with gt–itm.

For our simulations we need to choose the threshold dt

that is used to determine whether two nodes are physical
neighbors. Figure 4 shows the histogram of the underlay
distances. In our case values around 80-100 ms are reason-
able for dt, thus that only nodes lying in the same physical
domain can be chosen as shortcuts. Note that the thresh-
old has not to be adapted to the number of nodes in the
underlay N .

 0

 0.0005

 0.001

 0.0015

 0.002

 0 200 400 600 800 1000 1200 1400

underlay delay [ms]

1296 nodes
3072 nodes
6000 nodes
7986 nodes

Figure 4: Underlay delay distribution between all
pairs of nodes for topologies generated with different
number of nodes N .

Overlay: DTON
The overlay used for the simulation uses DTON [17], a fully
distributed P2P overlay network based on 3-dimensional De-
launay triangulation.

The node distribution in a NVE is not uniform since nodes
are organized in clusters. To obtain these clusters, we use
the so called Lévy Flight [9] that produces a random walk
through space using the Lévy distribution [6] to determine
the step size. The angles at the turning points are ran-
domly chosen. Removing the path and looking only at the

(turning) points, we get a distribution of points organized
in smaller and bigger clusters (Figure 5).

We ran simulations with uniform and clustered node dis-
tributions.

Figure 5: Node distribution obtained with Lévy
Flight.

Assignment of overlay nodes to underlay
Participants in NVEs are humans situated at the edge of
the Internet. Therefore, among the nodes generated only
those with a single link may participate in the overlay. We
simulated scenarios where different fractions of those nodes
that participate in the overlay, but did not observe that the
fraction of participants had a measurable influence on the
results obtained.

The assignment between the nodes of the generated net-
work and the overlay nodes is chosen random uniformly,
which will assure that peers located in a same network do-
main are well distributed in the overlay.

5.2 Metrics
The two most important metrics to assess the improve-

ment due to shortcuts are the number of hops and delay
experienced by a message.

Delay is best suited to compare the performance of overlay
routing, since the users strongly care about the perceived
delay.

The memory overhead needs to be measured too, which
will be done counting the average number shortcuts per
node:

SNo
=

PNo

i=1
|S(i)|

No
.

The value of SNo
depends on dt, since only if du(p, k) < dt

peers p and k may consider each other as shortcut. Increas-
ing dt leads to an increasing number of shortcuts per node.
SNo

also depends on the number of rings R (see Figure 2).
If each field is occupied, 2dR shortcuts are stored per node.
Therefore, SNo

≤ 2dR.
Since the peers get to know shortcuts by being part of the

overlay, No messages are sent between random peers before

the performance measures are computed. This ensures that
most peers know some shortcuts.

5.3 Results
Let us first illustrate how SAO works. The example dis-

played in figure 6 contains 1296 nodes and 3680 edges in the
underlay and 397 nodes participating in the overlay. The
path displayed is the longest one, which benefits most of the
shortcuts.

(a) Path taken in the overlay, from the point at the
top to the point at the bottom. The thin lines indi-
cate the shortcuts of the nodes visited.

(b) Path taken in the underlay, from the point on
the right to the point on the left. Grey lines: path
without shortcuts; dark lines: path with short-
cuts.

Figure 6: Path taken in the overlay and in the un-
derlay.

Considering the overlay (Figure 6(a)), what is the differ-
ence between the paths that use the shortcuts and the ones
that do not? With shortcuts, there exist overlay hops to
more distant nodes and therefore the number of hops per
path is smaller. However, this does not say anything about
the routes taken in the underlay and their respective delay.

Considering the underlay (Figure 6(b)), priority is given
to choosing overlay hops that are nearby in the underlay. If
we compare the two different paths at the underlay level, we
see that shortcuts can be very effective: The path without
shortcuts uses 6 overlay hops and has a total delay of 11049
ms. Using the shortcuts, these values are reduced to 3 hops
and 3418 ms. For comparison, shortest path routing in the
underlay gives 2471 ms. Only the first of the three hops
used is a shortcut (it is the very long one in figure 6(a)).

Figure 7 shows the shortcuts of a node. We see that short-
cuts are distributed over the entire region.

Figure 7: The lines show the shortcuts of the node
having most shortcuts.

One goal of using shortcuts is to reduce the number of
hops in the overlay. As noted earlier, the expected number of

overlay hops in an overlay based on the DT is O(N
1/d
o), for

the three dimensional implementation used it is O(N
1/3
o).

Using shortcuts, the expected number of hops can be re-
duced to O(log(No)) (Figure 8(a)). The same is true for the
delay (Figure 8(b)).

To control the memory requirement introduced by the
shortcuts, the threshold dt can be adjusted. Increasing dt

leads to more shortcuts per node but also to smaller hop
counts and delays. Adding only a few shortcuts already has
a great impact (Figure 9). After a certain point, adding
more shortcuts does not reduce the hop count or the delay
significantly anymore. The sweet spot lies around dt = 80.
The sweetspot directly depends on the network topology. In
the topology generated with gt-itm, the domains have a di-
ameter of about 100ms. Therefore it does not bring much
improvement to choose a threshold bigger than dt = 100.

Among all possible paths the very short ones with only one
or two overlay hops, which will not benefit a lot (or even not
at all) from the shortcuts. However, particularly the long
paths with at least 10 hops benefit a lot from shortcuts. In
figure 10 the complementary cumulative distribution func-
tion (CCDF) of the number of hops and delay is plotted.
We see that shortcuts significantly reduce both, the number
of hops and the delay.

 2

 4

 6

 8

 10

 12

 14

 16

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

ho
ps

nodes

without shortcuts
0.5*x1/3

with shortcuts
1.3*log10(x)

(a) Average overlay hop count.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
de

la
y

nodes

without shortcuts
282*x1/3

with shortcuts
403*log10(x)

(b) Average delay.

Figure 8: Average hop count and delay of 100 ran-
domly chosen paths, depending on the size No of the
overlay network. (dt = 80 ms)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0 20 40 60 80 100 120 140 160 180 200

 10

 20

 30

 40

 50

 60

ho
ps

sh
or

tc
ut

s

threshold [ms]

average hops
shortcuts per node

Figure 9: Number of shortcuts per node and the
average hop count as function of threshold dt (No =
18000 nodes).

In figure 10(a), for instance, we see that without shortcuts
20% of the longest paths have between 18 and 27 hops, while
with shortcuts 20% of the longest paths have only between
7 and 12 hops.

While not all nodes have the same number of shortcuts,
the variation in the number of shortcuts is small as can be
seen in figure 11(a), which depicts the CCDF of the fraction
of shortcut fields that are filled with shortcuts for different

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
C

D
F

number of hops

with shortcuts
without shortcuts

(a) The distribution of the overlay hop count.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
C

D
F

delay [ms]

with shortcuts
without shortcuts

(b) The distribution of the delay.

Figure 10: Complementary cumulative distribution
function of hop count and delay for 100 randomly
chosen paths (No = 18000 nodes, dt = 80 ms).

numbers of rings R. When we increase R, fewer fields are
filled. For R = 1 nearly all nodes find a shortcut for each
field.

The width of each ring depends on the number of rings,
since the total space covered remains always the same. When
doubling the number of rings R, the width of each ring is
halved. Therefore, with increasing R, it will become less
likely to find an appropriate shortcut for each field. This
can be seen in both figures: With increasing R, the fraction
of the fields filled decreases (figure 11(a)). With increasing
ring number r, the fraction of the fields filled decreases (fig-
ure 11(b)), which means that rings towards the center have
more fields filled with shortcuts than outer rings.

Figure 12(a) shows the evolution of the number of short-
cuts per node depending on the number of rings. The av-
erage number of shortcuts grows logarithmically with the
number of nodes. The absolute number of shortcuts remains
in the order of a few tens, which means that the storage
overhead will be very low.

With increasing R, the number of hops on a path de-
creases, since each node stores more shortcuts. Figure 12(b)
shows the average number of hops for 100 randomly chosen
paths. The first ring introduces the biggest benefit (com-
pared to an overlay without shortcuts); with each additional
ring the added benefit diminishes.

By adding more rings, each peer will have more short-
cuts and therefore the average hop count and delay will be
reduced. The evaluate the tradeoff between hop count re-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

fraction of shortcuts fields filled

1 ring
2 rings
3 rings
5 rings
9 rings

(a) CCDF of the number of shortcuts per node.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9

fr
ac

tio
n

of
 s

ho
rt

cu
ts

 fi
el

ds
 fi

lle
d

fo
r

rin
g

r

ring r

1 ring
2 rings
3 rings
5 rings
9 rings

(b) The distribution of the number of shortcuts per ring
r, averages over all overlay nodes.

Figure 11: Distribution of the number of shortcuts
per node and per ring for different numbers of rings
R (No = 18000 nodes, dt = 80 ms).

duction vs. additional storage cost, we plot in Figure 13 how,
for each additional ring, the ratio between hop count reduc-
tion and the number of additional shortcuts introduced. We
see that the ratio decreases rapidly for increasing R. We
propose to set R to 3 or 4, which limits the shortcuts per
node to 24 or 32 in the 3 dimensional case.

6. CONCLUSION
We showed how a Delaunay based overlay can be aug-

mented in very simple way by additional shortcuts to build
a small world overlay that will reduce both, average number
of hops and delay. When choosing shortcuts, we exploit the
fact that nodes are close to each other in the underlay may
be far away in the overlay.

The idea of shortcuts is not limited to Delaunay based
overlays but can be used in other structured overlays. A
promising candidate will be CAN, where each node only
knows overlay nodes that are close-by and shortcuts can be
used to increase the overlay distance traveled at each hop.

Acknowledgement
We would like to thank one of the reviewers for the very
detailed comments. This research was supported in part by
France Telecom contract number CRE 46128283.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

sh
or

tc
ut

 p
er

 n
od

e

nodes

9 rings
5 rings
3 rings
1 ring

(a) The average number of shortcuts per node.

 2

 3

 4

 5

 6

 7

 8

 9

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

ho
ps

nodes

1 ring
3 rings
5 rings
9 rings

(b) The average overlay hop count.

Figure 12: Average number of shortcuts per node
and average hop count of 100 randomly chosen
paths, as function of the number of rings R (No =
18000 nodes).

7. REFERENCES
[1] K. Calvert, M. Doar, and E. W. Zegura. Modeling

internet topology. IEEE Communications Magazine,
35(6):160–163, June 1997.

[2] K. Calvert, J. Eagan, S. Merugu, A. Namjoshi,
J. Stasko, and E. Zegura. Extending and enhancing
gt-itm. In MoMeTools ’03: Proceedings of the ACM
SIGCOMM workshop on Models, methods and tools
for reproducible network research, pages 23–27, 2003.

[3] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron.
Topology-aware routing in structured peer-to-peer
overlay networks. Technical Report MSR-TR-2002-82,
Microsoft Research, One Microsoft Way, Redmond,
WA 98052, 2002.

[4] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris.
Vivaldi: A decentralized network coordinate system.
In Proceedings ACM SIGCOMM 2004, Aug.

[5] B. Delaunay. Sur la sphère vide. A la mémoire de
Georges Voronoi. Izv. Akad. Nauk SSSR, Otdelenie
Matematicheskih i Estestvennyh Nauk, 7:793–800,
1934.

[6] M. Gutowski. Lévy flights as an underlying
mechanism for global optimization algorithms. ArXiv
Mathematical Physics e-prints, June 2001.

 0

 0.5

 1

 1.5

 2

 1 2 3 4 5 6 7 8 9 10

ho
p

re
du

ct
io

n
pe

r
ad

de
d

sh
or

tc
ut

s

rings

Figure 13: Reduction of the average overlay hops
per added shortcut per node depending on the num-
ber of rings (No = 18000 nodes).

[7] K. Hui, J. Lui, and D. Yau. Small world overlay p2p
networks. In Quality of Service, 2004. IWQOS 2004.
Twelfth IEEE International Workshop on, pages
201–210, 2004.

[8] J. Kleinberg. The small-world phenomenon: an
algorithm perspective. In STOC ’00: Proceedings of
the thirty-second annual ACM symposium on Theory
of computing, pages 163–170, 2000.

[9] P. Lévy. Théorie de l’Addition des Variables
Aléatoires. Gauthier-Villiers, Paris, 1937.

[10] M. Li, W.-C. Lee, and A. Sivasubramaniam. Semantic
small world: An overlay network for peer-to-peer
search. In Proceedings of the 12th IEEE International
Conference on Network Protocols (ICNP’04), pages
228–238, 2004.

[11] J. Liebeherr, M. Nahas, and S. Weisheng.
Application-layer multicasting with delaunay
triangulation overlays. IEEE Journal on Selected
Areas in Communications, 20(8):1472–1488, Oct. 2003.

[12] Y. Liu, Z. Zhuang, L. Xiao, and L. M. Ni. A
distributed approach to solving overlay mismatching
problem. In Proceedings of the 24th International
Conference on Distributed Computing Systems
(ICDCS’04), pages 132–139. IEEE Computer Society,
2004.

[13] S. Merugu, S. Srinivasan, and E. Zegura. Adding
structure to unstructured peer-to-peer networks: The
role of overlay topology. In Proceedings of NGC 2003,
volume 2816, pages 83–94, Sept. 2003.

[14] S. Milgram. The small world problem. Psychology
Today, 2:60–67, may 1967.

[15] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. In Proc. ACM
SIGCOMM, 2001.

[16] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
Peer-to-peer systems. In R. Guerraoui, editor,
Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware), LNCS, pages 329–350, Heidelberg,
Germany, November 2001. Springer.

[17] M. Steiner. Structure and algorithms for the
collaboration between peers and their application in

solipsis. Master’s thesis, University of Mannheim and
Institut Eurécom, Sophia-Antipolis, France, Mar.
2005.

[18] M. Steiner and E. W. Biersack. A fully distributed
peer to peer structure based on 3d delaunay
triangulation. In Proceedings of Algotel - Septièmes
Rencontres Francophones sur les Aspects
Algorithmiques des Télécommunications, pages 93–96,
May 2005.

[19] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proc. ACM
SIGCOMM, 2001.

[20] D. Watts and S. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393(6684):409–410,
1998.

[21] D. J. Watts. Small worlds: the dynamics of networks
between order and randomness. Princeton University
Press, Princeton, NJ, USA, 1999.

[22] M. Yvinec and J.-D. Boissonnat. Algorithmic
Geometry. Cambridge University Press, 1998.

[23] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph.
Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report
UCB/CSD-01-1141, Computer Science Division,
University of California, Berkeley, Apr 2001.

