
◆ Mitigating High Latency Outliers for
Cloud-Based Telecommunication Services
Fangzhe Chang, Peter S. Fales, Moritz Steiner, Ramesh
Viswanathan, Thomas J. Williams, and Thomas L. Wood

Telecommunication applications are distinguished by their stringent
requirements for availability and completion times. A highly available, low-
latency, distributed data store is therefore a critical component of cloud-
based realizations of telecommunication services. We present a systematic
experimental evaluation of state-of-the-art database systems as components
of telecommunication applications. We show that while their average
latencies are well within the required time scales, the distribution of
latencies exhibits a long tail of unacceptably large outliers which may
significantly impair meeting the performance requirements of
telecommunication applications. To address the observed phenomenon of
high latency outliers, we present a new solution that is implemented in a Bell
Labs system code named Flurry. Flurry is based on using the first response
from a replica rather than waiting for all or a quorum of responses from
replicas. To handle incorrect responses arising from message losses, Flurry
uses a novel checking algorithm based on vector clocks to determine the
correctness of a replica’s response. We present experimental evaluation
results which show that Flurry significantly reduces both the average
response time and the probability of unacceptable response times to values
that would allow meeting the availability and completion time thresholds
required for telecommunication services. © 2012 Alcatel-Lucent.

and networking resources can be dynamically leased.

A service provider, therefore, eliminates the risk of

under-provisioning an offered service and its poten-

tially serious consequences for both company finances

and brand image. Similarly, in a case where demand

for a service is lower than expected, resources can be

released, thereby reducing costs.

As a concrete representative example of a tele-

communication application, we consider the mobility

Introduction
With the introduction of large-scale data centers

and cloud platforms, telecommunication applications

are expected to move from being housed on special-

ized physical equipment to being virtually hosted in

the cloud. Initial evidence of this trend can be found

in [10] and [13]. The differentiating benefit offered

by such cloud-based solutions is the elasticity in uti-

lized resources. Specifically, if there is greater than

anticipated demand for a service, additional compute

Bell Labs Technical Journal 17(2), 121–142 (2012) © 2012 Alcatel-Lucent. Published by Wiley Periodicals, Inc.
Published online in Wiley Online Library (wileyonlinelibrary.com) • DOI: 10.1002/bltj.21548

122 Bell Labs Technical Journal DOI: 10.1002/bltj

management entity (MME) which serves as the con-

trol plane in the Long Term Evolution (LTE) cellular

backplane. The MME keeps track of the location

(tracking area, or TA) and associated state of a cellu-

lar phone (user equipment, or UE) as it moves

through the cellular network to complete and main-

tain network-initiated voice or data connections.

Because of power management concerns, LTE UEs

spend most of the time in low-power mode with their

transceiver turned off. UEs listen at regular intervals

to the beacons sent by the local base station (evolved

NodeB (eNB)) and explicitly notify the MME of

changes in their TA. The MME is charged with keep-

ing all data related to a UE—called the UE context—

current while the equipment is idle. The UE context

includes values for different UE identifiers. These

include the globally unique temporary UE identity

(GUTI), international mobile station identity (IMSI),

the state of the UE (e.g., idle, connected), security

keys (used for authentication and authorization

before a UE is connected), subscription data, and its

TA. When a call is made to the UE, the MME per-

forms paging by contacting all eNBs in the last known

TA in which the UE was detected before widening the

scope of the search. Thus, the MME also needs to

maintain the association of TAs with eNBs.

Requirements for the MME dictate that it be available

99.999 percent of the time and that within 500 ms,

networking and interface failures should be detected

and traffic re-routed without losing conversations.

Consequently, the UE context data and the association

of TAs with eNBs must be accessible with low

response time and resilient to failure.

More generally, we can observe that telecommu-

nication applications have the following distinguishing

characteristics. First, they have stringent requirements

on their availability and processing completion times.

Second, although the computations performed on

data are relatively simple, they are nevertheless data-

intensive in that a significant fraction of the message

processing logic is tied to querying and updating

session data and state. Together, these imply that a

critical component common to cloud deployments of

most telecommunication applications is a highly avail-

able and low-latency distributed data store. The recent

advent of NoSQL databases promise excellent response

time and scaling characteristics. The first contribution

of this paper is a systematic experimental evaluation of

existing NoSQL systems as components of telecom-

munication applications. We study the variation of

throughput and latency with respect to several factors

including read/write loads, degrees of replication, and

the number of network nodes. The systems consid-

ered include Apache Cassandra [14], Riak* [3], and

memcached [9] deployed both on physical machines

and a public cloud of leased virtual machines (Amazon

Elastic Compute Cloud (EC2*)). Our results show that

the average throughput indeed scales very well with the

number of network nodes, and that the average

latencies are well within the time scales required for

telecommunication applications. However, we also

found, somewhat surprisingly, that the distribution of

latencies exhibits a long tail of unacceptably large out-

liers which may significantly impair meeting the per-

formance requirements for telecommunication

applications.

Panel 1. Abbreviations, Acronyms, and Terms

API—Application programming interface
CDF—Cumulative distribution function
CPU—Central processing unit
DHT—Distributed hash tables
EC2—Elastic Compute Cloud
eNB—Evolved NodeB
ETS—Erlang term storage
GUTI—Globally unique temporary
ID—Identifier
IMSI—International mobile station identity

LRU—Least recently used
LTE—Long Term Evolution
MME—Mobility management entity
POSIX—Portable Operating System Interface
SQL—Structured Query Language
TA—Tracking area
TCP—Transmission Control Protocol
UDP—User Datagram Protocol
UE—User equipment
VM—Virtual machine

DOI: 10.1002/bltj Bell Labs Technical Journal 123

Referring again to the example of MME, the

requirement of 99.999 percent availability together with

a time completion of 500 ms demands that the proba-

bility of completion times being more than 500 ms is

guaranteed to be less than 0.00001, and our observed

magnitude of outlier latencies and their frequency

would thwart such a guarantee from being met.

Consequently, a second contribution of this paper

is a new solution, a Bell Labs system code named

Flurry, which we developed for fault-tolerant repli-

cation of state machines that can be applied to imple-

ment a reliable data store or, more directly, stateful

replicated copies of the standalone telecommunica-

tion applications. The key underlying insight behind

Flurry is that existing systems need to wait for

responses from at least the quorum number of repli-

cas and the overall response time is limited by the

worst percentile of latencies among the set of replicas.

Our proposed scheme is instead based on using only

the first correct response, and the resulting response

time is therefore more strongly correlated with the

best latency to a replica. The main technical challenge

is determining the correctness of a response in the

presence of message losses. Flurry adds vector clocks

[8, 15] to messages and identifies a checking condition

based on vector clocks for addressing this issue.

Finally, we present experimental evaluation results

which show that Flurry significantly reduces both the

average response time and the probability of unac-

ceptable response times to values that would allow

meeting the availability and completion time thresh-

olds required of telecommunication services.

The rest of the paper is organized as follows. First,

we present background on NoSQL databases and the

specific systems that we chose to evaluate. Next, we

present our experimental methodology and the eval-

uation results. We then present the design and imple-

mentation of the Flurry system and evaluation results

of its performance. We conclude with a summary of

our contributions and directions for further work.

Existing NoSQL Databases Studied
A significant number of application states and

data in telecom applications can be stored in NoSQL

databases which support high availability and scala-

bility. Compared with traditional relational databases

offering complex Structured Query Language (SQL)

queries and transactions over tables, NoSQL databases

are much simpler in that they store key-value pairs

and access data only through keys, with or without

strict concurrency control mechanisms. NoSQL

databases are typically highly available and scalable

since they are implemented to take advantage of a

cluster of machines with data replicated on different

machines. Since it is not always possible for a dis-

tributed system to be consistent (C), available (A),

and partition-tolerant (P) at the same time (i.e., CAP

theorem [12]), NoSQL databases tend to favor avail-

ability and partition tolerance over consistency in the

presence of machine failure or network partitioning,

and rely instead on application-assisted conflict reso-

lution when conflicting data versions are detected.

A set of key-value pairs is often regarded as a hash

table or dictionary. Correspondingly, such databases

are also called distributed hash tables (DHT).

Examples include Dynamo [6], Riak [3], Cassandra

[14], memcached [9], and CouchDB [2]. These

NoSQL databases are often built with their own per-

spectives. In this paper, we focus on aspects related

to deliver high availability, high scalability, and fast

responses, also known as low latency.

Dynamo [6], from Amazon, is a highly available

data store that is not publicly available. Dynamo par-

titions data using consistent hashing onto a circular

key space (i.e., ring) such that a node (i.e., machine)

is assigned a segment of the ring. In addition, each

data item is replicated on a list of nodes (called the

preference list) for high availability, with a coordina-

tor (typically the first node on the preference list) that

manages read and write operations on all replicas

using a sloppy quorum approach. In the standard

quorum approach (c.f. [11]), when network partitions

or nodes crash, the operation can fail or be blocked

indefinitely. In this scenario, sloppy quorum diverges

from the standard quorum by using the first set of

healthy nodes (on the preference list) for the write

operation. Dynamo uses hinted handoff to transfer

the affected data back to the original nodes once they

recover. If conflicts are detected (e.g., due to concur-

rent transfer-backs from multiple sections of the once-

split network, or when two application processes try

to update the same data item at the same time), the

124 Bell Labs Technical Journal DOI: 10.1002/bltj

application will receive all versions of the data at the

next read and will be responsible for performing data

reconciliation. Conflict detection and reconciliation is

based on data versioning. (A vector clock which con-

sists of a list of node-counter pairs provides the ver-

sion associated with every data item, indicating the

number of updates on the node to the corresponding

data item). Since data consistency eventually relies

on assistance from the application, Dynamo calls it

eventual consistency. Even though Dynamo supports

high availability and scalability, it lacks explicit mecha-

nisms to ensure small and predictive latency bounds.

In fact, [6] has reported that data accesses can have

99.9 percentile latency as high as �200 ms.

Riak [3] is an open source implementation of

Dynamo [6], with extended functionality such as links

and MapReduce [5]. MapReduce functions specified

in JavaScript* or Erlang can spread the processing of

a (possibly more advanced) query across many nodes

to take advantage of parallel processing power, with

the potential to shorten query latency. In addition,

Riak allows different storage back ends, e.g., in-memory

Erlang term storage (ETS) tables. In-memory back

ends avoid disk access, thus making responses faster.

Similar to Dynamo, conflicting data versions can occur

in Riak, for instance, due to concurrent writes or

writes from clients using a stale vector clock obtained

from a long-past reading. Applications must select one

of the siblings to replace the conflicting data versions.

Cassandra [14], initially developed by Facebook,

is an implementation of both Dynamo [6] and

Bigtable [4]. Bigtable focuses on storing a large

amount of data across commodity servers. Similar to

Bigtable, Cassandra structures a value into fields

under multiple column families and stores fields from

the same column family (spanning different keys)

together. As a result, this enhances the query response

time for a field of a fixed range of keys. Correspond-

ingly, Cassandra supports order-preserving hash func-

tions in addition to consistent hashing. It also provides

several replication policies including “Rack Unaware,”

“Rack Aware” (within a datacenter), and “Datacenter

Aware.”

memcached [9] is a key-value store (also known

as a hash table or dictionary) combined with cache

replacement policy, hosted in the memory of a cluster

of server machines. Each memcached server can be

regarded as a bucket storing a collection of data. The

client side library uses hash function mapping keys

to bucket numbers to determine which machine to

send requests to. When a bucket is full, subsequent

insertions cause older data to be purged in least

recently used (LRU) order. memcached uses multi-

versioning and is lockless and so that no client can

block any other client’s actions. Data items are not

replicated on memcached. Requests for keys on a

failed server simply result in a cache miss. Elasticache

[1], Amazon’s implementation of memcached, sup-

ports automatic failure detection and recovery, though

it lacks a replication function.

Experimental Evaluation of Existing
Database Systems

The following sections describe our experimental

methodology and report our test results.

Measurement Methodology
In the following sections, we present our test

client, the database systems tested, and the configu-

ration parameters considered in our tests.

Test client. We developed a simple test client to

measure the performance of the various database sys-

tems. The client was written in C�� (and C). This

language was chosen for several reasons:

• We felt it would give us the best control over the

low-level details of the system.

• Client libraries were available for all the target

database systems.

• We wanted to run tests on a number of different

hardware and software platforms, and this mini-

mized the prerequisites that needed to be satisfied

on those machines, e.g., no special libraries, or

execution environments such as Java*, Erlang,

or Eclipse would be required.

While the client itself is custom C and C�� code,

we were generally able to take advantage of existing

libraries to handle the details of the database applica-

tion programming interface (API). The client consists

of a common front end that handles argument pars-

ing, setting up the client threads, executing the tests,

calculating statistics, and printing the results; a mid-

dleware layer that translates generic calls such as

“write a key-value” pair to the library API; and a back

DOI: 10.1002/bltj Bell Labs Technical Journal 125

end, a library supplied by the database developers or a

third-party contributor. The client application starts

up a user-specified number of threads (each one

intended to simulate a typical “real” client). Each

thread sends a request to write a key-value pair into

the database, and when that completes, it sends a

request to read the value with the same key. It cycles

through a user-specified number of distinct keys, and

does this either as fast as possible, or throttled back to

some lower rate as specified by the user. All these

user-specified values and others are passed as com-

mand line parameters to the client application which

allows it to be easily scripted and run simultaneously

on multiple machines. Over the course of the test run,

the client accumulates statistics related to the response

time to each of the read and write requests (min, max,

average, and standard deviation). It can also be

instructed to save the response time data. This data

can be used to calculate 99.9, 99.99, and 99.999 per-

centile response times (done automatically by the

client), or further analyzed or used to create summary

plots using other tools.

The load on the target system can be varied either

by sending requests at a fixed rate, or by increasing

the number of client threads. With just one thread, the

system typically is very lightly loaded since the server

spends most of its time waiting for requests and

responses to pass through the network. However, with

multiple threads, several requests can be run in paral-

lel, and we can load the system down to the point that

database throughput becomes the bottleneck.

Database systems. Several representative NoSQL

database systems were selected, somewhat arbitrar-

ily, for more in-depth testing. These systems are

described below.

• Apache Cassandra is an example of a feature-rich,

high-availability, high-scalability, system which

stores data on disk, and goes to great lengths to

obtain a reasonable performance while at the

same time minimizing data loss through tech-

niques such as replication, commit logs, hinted-

handoff, bootstrapping of failed nodes, and others.

It is implemented in Java, and most testing was

done using version 0.6.8. The back end uses the

Apache Thrift interface for which C�� is one of

the supported targets (http://thrift.apache.org/).

• Riak is an example of a system which replicates

data across nodes for reliability and scaling, but

also keeps all data in memory. For the purposes of

our tests, all data was kept in memory. We pre-

sumed this would improve latency and through-

put, though perhaps at some cost to reliability.

Riak is implemented in Erlang and we used ver-

sion 0.14.1. The back end uses a C language client

library developed by Piotr Nosek with some local

enhancements (https://github.com/fenek/riak-

c-driver).

• memcached is not a distributed NoSQL system, but

we included it for comparison. Since it keeps

all data in memory and does not attempt to repli-

cate data across multiple machines, it should serve

as an example of the best that can be done in

terms of handling read and write operations

before adding-in the overhead needed for relia-

bility, scalability, and maintainability. It is written

in C and we used version 1.4.5. For the back end,

we used libmemcached version 0.44 (http://lib-

memcached.org/libMemcached.html).

• Other systems which we looked at, though in less

detail, include Project Voldemort (http://project-

voldemort.com/), and Redis (http://redis.io/).

Test parameters. There are a large number of

parameters that need to be considered when running

these tests. These include the architecture of the

database system (number of nodes, replication factor,

and disk-backed versus memory storage), the charac-

teristics of the host systems (disk, memory, CPU cores,

and processor speed), and the characteristics of the

client (number of threads, size of values, number of

unique keys, and read versus write mix). In addition to

those, which are common across most of the

databases, each NoSQL database typically has a large

number of parameters that can be adjusted to tune

performance for any particular workload, and for sys-

tems implemented in a virtual machine language such

as Java or Erlang, there are parameters for tuning the

virtual machine. In the data that follows we attempt to

show some typical cases, but we don’t claim that this

is the absolute best performance that could be obtained

for any particular database, hardware, and test load.

Typical parameters used for the majority of the

tests described here include:

126 Bell Labs Technical Journal DOI: 10.1002/bltj

• Three servers.

• Replication factor set to three (one copy stored

on each server).

• A test client (running on a different machine)

running several client threads (typically 8 to 16)

to simulate running multiple “real” client con-

nections to the database. The number of threads

was selected to provide a “reasonable” load on

the database (not overload, but more than the

very light load that is provided on a single-

threaded client) with the precise number being

fixed as follows. A series of tests was run starting

with a very light load, and then increasing the

number of threads. Typically the throughput

would scale in a close-to-linear fashion up to the

point where the system capacity was reached. At

that point, the response times would start to

increase significantly, and there would be little or

no increase in throughput. The test configuration

used for these measurements would be a level

well below this overload threshold.

• 250,000 unique keys distributed across the

servers, with data sizes of 1000 bytes.

• Where supported, “quorum” responses were used

for reads and writes. This means that the server

handling the request must get a response from a

quorum of the distributed nodes before returning a

response to the client. (In this case, when the repli-

cation factor is three, the quorum value is two.)

Test Results
One test goal was to compare the same tests run-

ning on virtual machines versus running on the “bare

metal” of a physical server. Though there was little

doubt that the performance of the physical machines

would be better than running on virtual machines, the

penalty for doing so was not as clear. In the following

sections, we’ve included plots of response latency ver-

sus time, as well as the corresponding cumulative dis-

tribution (CDF). Typically the CDF is better at showing

the distribution of the smaller typical response values,

while the time sequence plot is better at showing the

frequency and magnitude of the larger outliers.

Cassandra on physical machines. This test, illus-

trated in Figure 1, used three database nodes run-

ning on three high-end physical machines, and 16

client threads. Though the average response is around

2 milliseconds, the maximum time experienced by a

very small number of requests is over 250 millisec-

onds. The reasons for these fairly large outliers are

not well understood, but seem to be common to some

degree across the various systems. Tuning can help to

address the magnitude and frequency of these out-

liers, but it’s difficult to eliminate them completely.

Cassandra on virtual machines. This test, illustrated

in Figure 2, used three database nodes running on

three Amazon EC2 m1.large virtual machines, and 8

client threads. Though the average response is around

2 to 3 milliseconds, the maximum is over 100 times

larger, at around 600 milliseconds. There are a non-

trivial number of responses in the 20 to 30 millisecond

range—some of this is presumed to be due to hyper-

visor scheduling on the virtual machines.

Riak on physical machines. This test, whose results

are illustrated in Figure 3, used three database nodes,

running on high-end (8 core) processors. While there

are a very small number of responses in the tens of

milliseconds, 99.9 percent are under 3 milliseconds,

which is only about twice the average value of

approximately 1.7 milliseconds.

Riak on virtual machines. This test, with results

illustrated in Figure 4, was run using three Amazon

EC2 m1.large machines as server nodes. The load is

from a single client process running 8 client threads.

Here, the average response was around 3 milliseconds

and 99.9 percent of the requests complete in under

100 milliseconds, but there are a number that extend

out to several hundred milliseconds and a few that

take several seconds to complete.

Memcached on physical machines. This test, illus-

trated in Figure 5, was run using a high-end physical

machine as the memcached server. The load is from a

single client process running 32 client threads. Here

again, we see a very small number of responses in the

range of tens of milliseconds, compared to an average

time of less than 1 millisecond.

Memcached on virtual machines. This test, illus-

trated in Figure 6, was run using an Amazon EC2

m1.large machine as a server. The load is from a sin-

gle client process running 16 client threads. The aver-

age response time is under 1 millisecond, but there

are outliers of 200 milliseconds or more.

DOI: 10.1002/bltj Bell Labs Technical Journal 127

Write
Read

0

50

100

150

200

250

300

R
es

p
o

n
se

 t
im

e
(m

se
c)

CDF—Cumulative distribution function

0 50 100 150 200 250 300 350

Wall clock time (sec)

(b)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 10 100 1000

C
D

F

Response Time(msec)

Read/write cumulative distributions - Cassandra on physical servers

 0.1

Write latency - Cassandra on physical servers

Write

Figure 1.
Cassandra on physical machines.

128 Bell Labs Technical Journal DOI: 10.1002/bltj

0

0.2

0.4

0.6

0.8

1

1 10 100 1000
Response time (msec)

Read/write cumulative distributions - Cassandra on EC2† virtual machines

Write
Read

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350

R
es

p
o

n
se

 t
im

e
(m

se
c)

Wall clock time (sec)

Write latency - Cassandra on EC2 virtual machines

Write

CDF—Cumulative distribution function
EC2—Elastic Compute Cloud

†Trademark of Amazon Technologies.

(a)

(b)

C
D

F

Figure 2.
Cassandra on virtual machines.

DOI: 10.1002/bltj Bell Labs Technical Journal 129

0

0.2

0.4

0.6

C
D

F

0.8

1

Read/write cumulative distributions - Riak† on physical servers

Write latency - Riak on physical servers

Write

Read

0.1 1
Response time (msec)

(a)

10 100

0
0

5

10

15

R
es

p
o

n
se

 t
im

e
(m

se
c)

20

25

50 100 150 200 250 300

Wall clock time (sec)

(b)

350

Write

CDF—Cumulative distribution function

†Registered trademark of Basho Technologies, Inc.

Figure 3.
Riak on physical machines.

130 Bell Labs Technical Journal DOI: 10.1002/bltj

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000

C
D

F

Response time (msec)

Read/write cumulative distributions - Riak† on EC2‡ virtual machines

Write
Read

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150 200 250 300 350

R
es

p
o

n
se

 t
im

e
(m

se
c)

Wall clock time (sec)

Write latency - Riak on EC2 virtual machines

Write

CDF—Cumulative distribution function
EC2—Elastic Compute Cloud

†Registered trademark of Basho Technologies, Inc.
‡Trademark of Amazon Technologies.

(b)

(a)

Figure 4.
Riak on virtual machines.

DOI: 10.1002/bltj Bell Labs Technical Journal 131

0

 0.2

 0.4

 0.6

 0.8

1

0.1 1 10 100
Response time (msec)

Read/write cumulative distributions - memcached on physical servers

Write
Read

(b)

CDF—Cumulative distribution function

(a)

C
D

F

Write

0
0

5

10

15

R
es

p
o

n
se

 t
im

e
(m

se
c)

20

25

50 100 150 200
Wall clock time (sec)

250 300 350

Figure 5.
Memcached on physical machines.

132 Bell Labs Technical Journal DOI: 10.1002/bltj

0

0.2

0.4

0.6

0.8

1

 0.1 1 10 100 1000

C
D

F

Response time (msec)

Read/write cumulative distributions - memcached on EC2† virtual machines

Write
Read

(b)

CDF—Cumulative distribution function
EC2—Elastic Compute Cloud

(a)

†Trademark of Amazon Technologies.

0
0

50

100

150

Re
sp

on
se

 ti
m

e
(m

se
c)

200

250

50 100 150

Wall clock time (sec)

Write

Write latency-memcached on EC2 virtual machines

200 250 300 350

Figure 6.
Memcached on virtual machines.

DOI: 10.1002/bltj Bell Labs Technical Journal 133

Cassandra scaling. These results, illustrated in

Figure 7, were obtained by testing Cassandra using a

range of cluster sizes (4 to 128) nodes, and a range of

replication factors. Machines are m1.large (dual core)

EC2 machines. Each node runs both a Cassandra

server and a client running 50 threads. All nodes were

running in a single EC2 region (US East).

Riak scaling. These results, illustrated in Figure 8,

were obtained by testing Riak using a range of cluster

sizes (4 to 128) nodes, and a range of replication fac-

tors, which Riak calls the “n_val.” Both read and write

are set to “quorum” (r � quorum, w � quorum). The

machines are m1.large (dual core) EC2 machines.

Each node runs both a Riak server and a client run-

ning 50 threads. Using multiple test clients helps the

load scale up with the number of nodes, and running

local clients simplifies the test procedure. All nodes

were running in a single EC2 region (US East). The

RF � 2 and RF � 3 curves are fairly close together

because for both 2 and 3 the quorum is 2. When the

n_val increases to 4, the quorum value increases to 3.

Flurry: A System for Mitigating Latency Outliers
One method of mitigating delays on a reliable dis-

tributed data store is to use the first correct response

replies from an ensemble of individually unreliable data

servers rather than waiting for a quorum of responses

or for all responses. This will smooth out temporary

delays that may affect a subset of the data servers dur-

ing the duration of any given distributed operation.

The problem then becomes how to determine

whether any particular response from an arbitrary

data server in an ensemble of data servers is a correct

response. For a subset of potential systems we can use

vector clocks to determine whether a message is cor-

rect if the following restrictions are observed:

0

20000

40000

60000

80000

100000

120000

140000

0 20 40 60 80 100 120 140

W
/R

 o
p

er
at

io
n

s/
se

c

Number of nodes

EC2† 2 to 128 nodes (repeated 30 minute runs, multiple clients)

(2, 4, 8 nodes are 5 min,
single-client tests)

ReplicationFactor � 1

ReplicationFactor � 2

ReplicationFactor � 3

EC2—Elastic Compute Cloud
W/R—Write/read

†Trademark of Amazon Technologies.

Figure 7.
Cassandra scaling.

134 Bell Labs Technical Journal DOI: 10.1002/bltj

1. Only a single client will access the data for a par-

ticular key.

2. The client can provide an ordered sequence iden-

tifier (ID) for each of the operations on the data

associated with a key.

These restrictions can be met for a class of tele-

com applications where a single client (e.g., a mobile

handset) is interacting with an application where

the data about that interaction is maintained as session

data and stored with a key unique for that session.

The client also needs to provide the application with a

sequence number for the message within the session,

but this is typically available in many protocols as a

method to prevent replay attacks.

The Flurry reliable distributed database test bed

was implemented to allow us to conduct experiments

which would test whether existing real-world cloud

implementation systems can be used as a base for

classes of telecom applications that meet the afore-

mentioned restrictions, and will exhibit the latency

characteristics which make those architectures feasi-

ble. Flurry, which was developed by our team at Bell

Labs, is not a fully implemented reliable distributed

data store like commercial systems such as Cassandra

and Riak, and as such can’t be directly compared with

those systems. It does, however, allow us to compare

the various algorithms used to determine a correct

response, and its degree of instrumentation allows

us to explore how the algorithms and architectural

choices handle failures such as dropped or delayed

messages, and network isolation events in a con-

trolled environment by injecting those error situa-

tions into the experiments using the test bed code

itself.

0

20000

40000

60000

80000

100000

0 20 40 60 80 100 120

W
/R

 o
p

er
at

io
n

s/
se

c

Number of nodes

EC2† m1.large 4 to 128 Riak‡ nodes (5 minute runs, 50-thread client per server)

ReplicationFactor � 1

ReplicationFactor � 2

ReplicationFactor � 3

ReplicationFactor � 4

EC2—Elastic Compute Cloud
W/R—Write/read

†Trademark of Amazon Technologies.
‡Registered trademark of Basho Technologies, Inc.

Figure 8.
Risk scaling.

DOI: 10.1002/bltj Bell Labs Technical Journal 135

The Flurry design may be described as an object

model where major components are implemented as

objects and communication occurs by passing a mes-

sage object (“FlurryPayload”) between those compo-

nents. The FlurryPayload contains not only the data

needed to describe the request (e.g., the key, value,

and type of command), but also the routing data for

that message, as well as instrumentation data such as

time stamps and errors that should be introduced

when processing the message.

The components of the Flurry system, illustrated

in Figure 9, include the

• Portal, which provides methods for the client to

interact with the Flurry system.

• Session router, which uses the key for a read/write

operation to algorithmically determine (e.g., using

distributed hash tables) which set of data servers

hold the data for that key. It then sends a copy of

the message to each of those data servers. The

session router forwards the response from a data

server to the portal when it meets the correctness

criteria for the specified algorithm (first correct

response, quorum, or all-in).

• Data server, which provides the physical storage

for the key-value store. It also provides the check-

ing (vector clock) to determine whether the opera-

tion in the message can be satisfied with its

current version of the data stored on that server.

• Controller, which provides the mechanism for

managing the configuration of the Flurry system,

namely providing information on where the var-

ious components are being hosted (which system,

which port, and which transport mechanism

should be used to route a message from one com-

ponent to another).

Each data server is required to check the vector

clock to see if a particular data server is able to satisfy

the requested operation on the version of the data

stored on that server. If the check fails, an error mes-

sage is returned to the session router, which can for-

ward the correct response received from a different

data server to allow the data server to catch-up to the

current version of the data.

Flurry Implementation
The Flurry test bed is implemented as a static

library in C��. It uses Google protocol buffers to mar-

shal the data in the messages passed between com-

ponents, sockets to transport messages between

components in different processes, and direct method

calls as transport between component instances in the

same process. The Flurry library uses pthreads to

manage asynchronous operations. It was developed

to run in a generic Linux*/POSIX environment.

Each process has a single instance of the

FlurryController which will bring up the components

that are defined by the configuration to be resident

within the process. The FlurryController also spawns

a thread for each port on which the process is config-

ured to receive messages. Messages to components

Portal Session
router

Data
server

Controller

1..*1..*

n

n

1

n n

1 n

Figure 9.
Components of the Flurry system.

136 Bell Labs Technical Journal DOI: 10.1002/bltj

which are external to the process are routed over a

socket to the process which contains the component.

The Flurry test bed is designed to allow for the use of

either User Datagram Protocol (UDP) or Transmission

Control Protocol (TCP) sockets although the initial

experiments were conducted with UDP.

The “session router” is implemented as a separate

component from the “portal” to allow for experiments

which distribute those behaviors, although for

the experiments using the “first correct response,” the

“FlurryPortal” and “FlurrySessionRouter” objects are

co-located in a process so that they have the same

availability. There is one FlurryPortal instance for each

client thread doing Flurry queries.

The client can specify which correctness algorithm

should be used by Flurry on a per-message (or system

default) basis. The FlurrySessionRouter tracks all the

messages for each query in a log so performance can

be compared between algorithms. That way the client

can have its query satisfied by the first response but

we still log the information on when the remaining

responses arrive so we can also determine how the

client would have performed using one of the other

algorithms.

For the test bed, the data store was implemented

as a simple in-memory hash table without any long

term persistence since that wasn’t a focus of the

research.

Evaluation of Flurry Experiments
We tested the Flurry distributed database test bed

using the same client as the tests run on the com-

mercial distributed databases. Since Flurry also allows

us to inject delays and message losses, we are able to

simulate the behaviors observed in the commercial

databases with respect to the average response char-

acteristics as well as the outliers. Flurry was tested in

the same configurations used for the tests of the com-

mercial NoSQL databases described earlier and also

tested with simulated delays.

Flurry with simulated server delays. A configuration

of three data servers and a single test client were used

for this illustrative test run, shown in Figure 10. A data

replication factor of 3 was used to allow a distinction

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

C
D

F

Response time (msec)

Flurry client test cumulative distribution

FIRST
QUORUM

ALL-IN

CDF—Cumulative distribution function

Figure 10.
Flurry with simulated server delays.

DOI: 10.1002/bltj Bell Labs Technical Journal 137

between the different algorithms tested. For a sunny

day transaction scenario, first response would need

one response message, quorum would need two

response messages, and all-in would need three

response messages.

The average values for the read and write trans-

actions, shown in Table I, are very similar across all

three algorithms, with the first response algorithm

being slightly better than the quorum.

In this case with simulated network and data

server delays, the first response algorithm is able to

mitigate the response latency caused by data server

delays.

Flurry on virtual machines. With flurry running on

Amazon EC2 m1.large machines, the CDF graph pro-

vided in Figure 11 shows the first correct response

algorithm performing better than the quorum or all-

in algorithms in this illustrative three server cluster.

We can observe a number of outliers in the plot of

the write latency, shown in Figure 12, when using

the quorum algorithm.

When we look at the same data set, this time

using the first correct response algorithm for process-

ing the data, we can see that several of the outliers

have been removed, as shown in Figure 13.

With the runs in the Amazon EC2 cloud, we

observed that about 20 percent of the outlier latencies

reported with the quorum operator are removed

when using the first response algorithm. In the data

First response Quorum All-in

Average
response 3.5 4.1 5.2

(milliseconds)

Maximum
response 30 87 247

(milliseconds)

Table I. Average values for read and write transactions.

0

 0.2

 0.4

 0.6

 0.8

1

0.1 1 10 100 1000

C
D

F

Response time (msec)

Flurry client test cumulative distributions

FIRST
QUORUM

ALL-IN

CDF—Cumulative distribution function

Figure 11.
Flurry on virtual machines.

138 Bell Labs Technical Journal DOI: 10.1002/bltj

0

 10

 20

 30

 40

 50

 60

 70

0

20
00

0

40
00

0

60
00

0

80
00

0

10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

20
00

00

R
es

p
o

n
se

 t
im

e
(m

se
c)

TID index

Write latency

Write

TID—Tuple-identifier

Figure 12.
Outliers when using quorum.

0

10

20

30

40

50

60

70

0

20
00

0

40
00

0

60
00

0

80
00

0

10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

20
00

00

R
es

p
o

n
se

 t
im

e
(m

se
c)

TID index

Write latency

Write

TID—Tuple-identifier

Figure 13.
Outliers removed with use of first correct response algorithm.

DOI: 10.1002/bltj Bell Labs Technical Journal 139

set for the latency plots, the 10 transactions with the

highest latency are shown in Table II, along with

the amount of time (in milliseconds) that each of

those transactions would have taken with the three

algorithms tested.

The first correct response algorithm does a good

job of mitigating delays that affect individual data

servers, such as those caused by VM context changes

or dropped UDP packets, although even using first

response, we were still seeing enough outliers when

running on Amazon EC2 to prevent us from meeting

the 99.999 percent availability within the budgeted

time. The number of outliers is related to the load

placed on the system in that as we increased the num-

ber of clients reading and writing data, we saw the

number of outliers increase, but even with a very light

load the occurrence of outliers did not go to zero.

We instrumented Flurry to record the time stamp

when the kernel posted the UDP packet to the socket,

as well as when the Flurry application received the

packet for processing as suggested by earlier perfor-

mance studies [17, 18] on the Amazon EC2 cloud.

This allowed us to observe that the outliers that

remained after we applied the first response algorithm

were caused by delays in the client code. We saw

instances of several hundred milliseconds between

when the kernel time-stamped the arriving UDP

packet and posted it to the socket, and when the

application completed the “recvfrom” system call on

the socket to process the packet. The measurements

were recorded on both the clients and the data

servers.

In this example run on Amazon EC2, “Hop1”

refers to time on the data server from the receipt of

the request packet and posting to socket by the kernel

and the processing of that packet by the Flurry appli-

cation. “Hop2” refers to the time on the client

machine from the receipt of the response packet until

the Flurry application was able to process that packet.

Looking at 6,758,460 messages, we observed:

Hop1: Min � .012 milliseconds Max � 62.015

milliseconds

Hop2: Min � .013 milliseconds Max � 756.626

milliseconds

When running the Flurry client on physical

machines and the data servers on virtual machines,

we see the number of outliers drop off dramatically.

Processed 3,037,986 messages:

Hop1: Max � 542.226 milliseconds (136 outliers

above 100 milliseconds)

Hop2: Max � 205.603 milliseconds (5 outliers

above 100 milliseconds)

Since the Hop1 latency was distributed between

the data servers, using the quorum and first response

algorithms ensured that the system was not affected

by those latencies. The Hop2 latency shown was not

affected by the choice of algorithm, but occurred

infrequently enough to meet our budget.

Conclusion
A highly-available low-latency distributed data

store is critical to a cloud-based implementation for

most telecommunication applications. We considered

several existing database systems that were selected to

comprehensively cover the most promising state-of-

the-art solutions, and we conducted experiments to

thoroughly evaluate their scaling and latency charac-

teristics. Our results confirm their excellent perfor-

mance with respect to scaling and average latencies.

However, we also show, somewhat surprisingly, that

the 99.999th percentile of latencies can be worse than

10 times the average latencies. To our knowledge, this

is the first study of the fine-grained distribution of

TID—Tuple-identifier index

TID First response Quorum All-in

71255 36.3 36.4 68.7

367575 41.7 41.7 45.7

214333 44.4 44.4 44.8

76466 0.6 60.3 133.3

335343 60.5 60.5 60.6

339919 60.6 60.7 60.7

366369 60.6 60.7 60.8

20273 0.5 60.7 60.8

240813 61.8 61.9 92.1

73190 110.1 110.1 110.2

Table II. Transactions with the highest latency.

140 Bell Labs Technical Journal DOI: 10.1002/bltj

latencies. In recent work [16], the impact of the

latency performance of distributed database systems

has been experimentally studied—however, that work

considers worst-case (as opposed to probabilistic) laten-

cies and the solutions proposed are based on real-time

scheduling. We presented a new system which we call

Flurry that uses the first response from a replica and

a checking algorithm based on vector clocks to deter-

mine the correctness of a response in the presence of

message losses. While the notion of vector clocks is

not particularly new, previous applications have been

limited to determining causality, and our application

for handling message losses seems novel. While the

idea of reducing the number of replicas accessed was

previously considered in [7], its application was lim-

ited to reads with writes still being performed on all

replicas. Flurry is not yet as robust or mature in com-

parison to commercial systems. However, our experi-

mental evaluation of Flurry shows that the idea of

using first response, besides improving average laten-

cies, can significantly improve the distribution char-

acteristics of latencies.

We have identified a class of systems for which

the Flurry vector-checking algorithm is applicable.

Specifically, these are client-server systems with

redundancy and high availability limited to the server.

In future work, we plan to devise extensions of the

checking algorithm to the more general setting of fully

distributed peer-to-peer systems with a more formal

analysis of its correctness properties. More generally,

we are investigating the end-to-end design of a cloud-

based system for achieving low latencies with high

availability. The simplest way to use a reliable data

store directly is to decouple the message processing

from the data processing by having a set of replicated

stateless message processors that process incoming

messages and use the reliable data store for reading

and updating the session state. This design achieves

efficient parallelism in dispatching and processing

incoming messages but its overall performance is lim-

ited by the latency characteristics of the data store.

We are therefore also investigating an alternate design

where the data is co-located with its processing ele-

ments as a set of replicated stateful components with

no data sharing among different components. In such

a system, the data access times are significantly

reduced, but more elaborate replication algorithms

need to be devised and any resulting improvement in

the overall performance still requires evaluation.

*Trademarks
Amazon EC2 is a trademark of Amazon Technologies.
Java and JavaScript are trademarks of Sun Microsystems,

Inc.
Linux is a trademark of Linus Torvalds.
Riak is a registered trademark of Basho Technologies,

Inc.

References
[1] Amazon Web Services, “Amazon ElastiCache:

Getting Started Guide,” API Version 2011-07-
15, 2011, �http://awsdocs.s3.amazonaws
.com/ElastiCache/latest/elasticache-gsg.pdf�.

[2] J. C. Anderson, J. Lehnardt, and N. Slater,
CouchDB: The Definitive Guide, O’Reilly
Media, Sebastopol, CA, 2010.

[3] Basho Technologies, “Riak”, �http://wiki.basho
.com/Riak.html�.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,
D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber, “Bigtable: A
Distributed Storage System for Structured
Data,” Proc. 7th USENIX Symp. on Operating
Syst. Design and Implementation (OSDI ‘06)
(Seattle, WA, 2006).

[5] J. Dean and S. Ghemawat, “MapReduce:
Simplified Data Processing on Large Clusters,”
Proc. 6th Symp. on Operating Syst. Design and
Implementation (OSDI ‘04) (San Francisco, CA,
2004).

[6] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: Amazon’s Highly Available Key-
Value Store,” Proc. 21st ACM SIGOPS Symp. on
Operating Syst. Principles (SOSP ‘07)
(Stevenson, WA, 2007), pp. 205–220.

[7] A. El Abbadi, D. Skeen, and F. Cristian, “An
Efficient, Fault-Tolerant Protocol for Replicated
Data Management,” Proc. 4th ACM SIGACT-
SIGMOD Symp. on Principles of Database Syst.
(PODS ‘85) (Portland, OR, 1985), pp. 215–229.

[8] C. J. Fidge, “Timestamps in Message-Passing
Systems That Preserve the Partial Ordering,”
Proc. 11th Austral. Comput. Sci. Conf. (ACSC
‘88) (Brisbane, Aus., 1988), pp. 56–66.

[9] B. Fitzpatrick, “Distributed Caching with
Memcached,” Linux J., Aug. 1, 2004,

DOI: 10.1002/bltj Bell Labs Technical Journal 141

�http://www.linuxjournal.com/article/7451?
page�0,0�.

[10] J. Gabrielsson, O. Hubertsson, I. Más, and R. Skog,
“Cloud Computing in Telecommunications,”
Ericsson Rev., 1 (2010), 29–33, �http://www
.ericsson.com/res/thecompany/docs/publication
s/ericsson_review/2010/cloudcomputing.pdf�.

[11] D. K. Gifford, “Weighted Voting for Replicated
Data,” Proc. 7th ACM Symp. on Operating Syst.
Principles (SOSP ‘79) (Pacific Grove, CA, 1979),
pp. 150–162.

[12] S. Gilbert and N. Lynch, “Brewer’s Conjecture
and the Feasibility of Consistent, Available,
Partition-Tolerant Web Services,” ACM SIGACT
News, 33:2 (2002), 51–59.

[13] IBM, “SK Telecom Builds Cloud Computing
Platform with IBM,” Press Release, Dec. 16,
2009, �http://www-03.ibm.com/press/us/en/
pressrelease/29041.wss�.

[14] A. Lakshman and P. Malik, “Cassandra – A
Decentralized Structured Storage System,” ACM
SIGOPS Operating Syst. Rev., 44:2 (2010),
35–40.

[15] F. Mattern, “Virtual Time and Global States of
Distributed Systems,” Proc. Internat. Workshop
on Parallel and Distrib. Algorithms (Chateau de
Bonas, Gers, Fra., 1988), pp. 215–226.

[16] Y. J. Singh, Y. S. Singh, A. Gaikwad, and
S. C. Mehrotra, “Dynamic Management of
Transactions in Distributed Real-Time
Processing System,” Internat. J. Database
Management Syst., 2.2 (2010), 161–170.

[17] G. Wang and T. S. E. Ng, “The Impact of
Virtualization on Network Performance of
Amazon EC2 Data Center,” Proc. 29th IEEE
Internat. Conf. on Comput. Commun.
(INFOCOM ‘10) (San Diego, CA, 2010).

[18] J. Whiteaker, F. Schneider, and R. Teixeira,
“Explaining Packet Delays Under
Virtualization,” ACM SIGCOMM Comput.
Commun. Rev., 41:1 (2011), 38–44.

(Manuscript approved March 2012)

FANGZHE CHANG is a member of technical staff at Bell
Labs in Murray Hill, New Jersey. His current
research focuses on distributed computing,
service composition, and networking
systems. Dr.Chang received his bachelor’s
degree from the Changsha Institute of

Technology and his master’s degree from the Institute

of Software, Academia Sinica, both in the Peoples
Republic of China, and received his Ph.D. in computer
science from the Courant Institute of Mathematical
Sciences at New York University in New York City.

PETER S. FALES is a member of technical staff in Bell
Labs Service Infrastructure research
department and is based in Naperville,
Illinois. He has a bachelor’s degree in
electrical engineering with computer
science from the University of Colorado in

Boulder, Colorado, and a master’s degree in electrical
engineering from Stanford University in Palo Alto,
California. Mr. Fales has been with AT&T, Lucent
Technologies, and Alcatel-Lucent for 30 years, and
began his career in AT&T’s Computer System Division.
He has worked in software development areas
associated with both wireline and wireless switching
systems and for the past 10 years he has been the
Central Administrator for Alcatel-Lucent Exptools, a
large collection of open-source and proprietary tools
provided collaboratively and used by developers
throughout Alcatel-Lucent. His interests include open-
source software, network applications, and ways to use
software tools to improve productivity.

MORITZ STEINER is a member of technical staff at Bell
Labs in Murray Hill, New Jersey. He received
his M.S. degree (Diplom) in computer
science from the University of Mannheim in
Germany, and his Ph.D. degree in computer
networks from jointly from Telecom

ParisTech, France and the University of Mannheim. His
doctoral thesis investigates how to build virtual
network environments from unstructured peer-to-peer
networks. It also introduced measurement techniques
and presented extensive measurement results on a real
world, large-scale, structured peer-to-peer file sharing
network, named Kad. His research interests and project
activities are in the areas of analysis and design of
peer-to-peer networks and cloud computing.

RAMESH VISWANATHAN is a member of technical staff
in Bell Labs’ Enabling Computing
Technologies research domain, and is based
in Murray Hill, New Jersey. He is broadly
interested in the application of
mathematical logic and formal methods to

deriving precise and systematic solutions for problems
arising in the practice of software systems and

142 Bell Labs Technical Journal DOI: 10.1002/bltj

networks. His current work focuses on cloud
deployment of telecommunication services and
specification logics, synthesis and verification for
automatic service composition. Previously, he has
worked on semantics for functional, imperative, and
object-oriented languages; virtual multimedia
environments for supporting collaboration; alarm
correlation for network management; topology
discovery for public Internet Protocol (IP) networks;
logics for compositional verification; online monitoring
techniques for detecting and locating faults in
deployed networks; analysis of Border Gateway
Protocol (BGP) convergence; and protocols for inter-
domain quality of service (QoS)-aware routing. He
received a B.Tech in computer science and engineering
from the Indian Institute of Technology in Kanpur, and
a Ph.D. in computer science from Stanford University in
California. Dr. Viswanathan was a Rosenbaum Fellow at
the Isaac Newton Institute for Mathematical Sciences in
Cambridge University, UK, from 1995 to 1996.

THOMAS J. WILLIAMS is a distinguished member of
technical staff in Bell Labs’ Service
Infrastructure Research Domain, and is
based in Columbus, Ohio. He has a B.S. in
computer science from Ohio University,
Athens, Ohio and a M.S. in computer

science from Case Western Reserve University in
Cleveland. He began his career almost 30 years ago
with AT&T’s Western Electric division, and worked in
operations support and network management systems
software development before moving to Bell Labs.
Over the past dozen years, he has held various research
positions in the Bell Labs Advanced Technologies
Software Technology Center, in Bell Labs Ventures, and
in Bell Labs Research. Mr. Williams’ holds one patent.
His interests include software architecture, database
systems, and agile development techniques, and his
current focus is on cloud-based distributed real time
data services and architectures.

THOMAS L. WOOD is a director in Bell Labs’ Enabling
Computing Technologies research domain
and is based in Holmdel, New Jersey. Hired
into Bell Labs’ Government Communication
Center, he has been with the company for
over 25 years, and has worked on a variety

of projects including large-scale control systems, image
processing, and real time media processing. He led a
team that created Voice over Internet Protocol (VoIP),
IP traffic-shaping technology, and a hardware

architecture that was deployed as part of a fiber-to-
the-home solution. The technology was adapted and
deployed as part of the company’s Line Access Gateway
product. Mr. Wood also served as a Brookings
Congressional Fellow in the office of Senator Bill Frist.
He has a B.S.E.E. from Rensselaer Polytechnic Institute
in Troy, New York, and an M.S.C.S. from Columbia
University in New York City. ◆

